AUTHORIZATION FEDERATION IN MULTI-TENANT MULTI-CLOUD IAAS

APPROVED BY SUPERVISING COMMITTEE:

Ravi Sandhu, Ph.D., Chair

Ram Kirishnan, Ph.D., Co-Chair

Gregory White, Ph.D.

Matt Gibson, Ph.D.

Palden Lama, Ph.D.



Copyright 2016 Navid Pustchi
All right reserved.



DEDICATION

This dissertation is dedicated to my parents and my family, who patiently supported me all the way.
I must also thank all my friends.






AUTHORIZATION FEDERATION IN MULTI-TENANT MULTI-CLOUD IAAS

by

NAVID PUSTCHI, M.S.

DISSERTATION
Presented to the Graduate Faculty of
The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
May 2016



ProQuest Number: 10108511

Allrightsreserved

INFORMATION TO ALL USERS
The quality of thisreproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the authordid not send a complete manuscript
and there are missing pages, these willbe noted. Also, if material had to be removed,
a note willindicate the deletion.

Pro(Quest.
/ \

ProQuest 10108511
Published by ProQuest LLC (2016). Copyright of the Dissertation isheld by the Author.

Allrightsreserved.
Thisworkisprotected against unauthorized copying under Title 17, United SatesCode
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Esenhower Parkway
P.O. Box 1346

Ann Arbor, M148106 - 1346



ACKNOWLEDGEMENTS

First, I would like to thank my advisors Prof. Ravi Sandhu and Prof. Ram Krishnan for their pro-
fessional guidance. Without their help, this work could not be accomplished. They have provided
guidance on how to do research and also provided great research topics which motivated me to
grow and learn faster. They taught me to learn not only how to find and solve practical technical
problems but also how to be a better person in life. The emphasize on contributing to real world
problems than just writing academic papers is one of the most important takeaways from Ph.D life.
Second, I would like to express gratitude to my other committee members Prof. Gregory White,
Prof. Matt Gibson, and Prof. Palden Lama for their valuable comments and suggestions.

Third, I would like to thank my colleagues and friends in the lab. We learned the tools for im-
plementation together and they’ve provided great help when I got stuck in programming issues.
Especially, I want to thank Farhan Patwa, director of our lab. Without him, I could not finish the
implementation project, which is a crucial part of my dissertation. During this period, I gained

industry level experience from which further benefited me in job hunting.

May 2016

il



AUTHORIZATION FEDERATION IN MULTI-TENANT MULTI-CLOUD IAAS

Navid Pustchi, Ph.D.
The University of Texas at San Antonio, 2016

Supervising Professor: Ravi Sandhu, Ph.D.

Cloud computing significance has been proven in the marketplace and well documented in
the literature. A major concern in adopting cloud Infrastructure-as-a-service (laaS) is federation,
where tenants engage in collaborative tasks requiring resources to be shared across tenant bound-
aries. Federation is a critical impediment to private, public, and hybrid cloud deployments today.
The federated cloud model is a significant shift towards democratization in the cloud market. It
enables businesses using local cloud providers to connect with customers, partners and employees
anywhere in the world. In this context, cloud service providers (CSP) use multi-tenancy to con-
solidate economic utility of shared infrastructure by isolating users’ data into tenants. Tenants are
isolated containers owning resources such as users, storage objects, and virtual machines in the
cloud. While tenant isolation is desirable, it hinders federation in cloud platforms.

Role-based access control (RBAC) has been widely accepted and applied in practice for over
two decades. The majority of current cloud IaaS platforms adopt some variation of RBAC. It
has been considerably investigated in terms of multi-tenancy, federation, policy integration, etc.
However, to cover RBAC limitations, there has been considerable recent interest towards attribute-
based and attribute integration to role-based models. Attribute-based access control (ABAC) also
has been researched on various aspects such as policy languages and multi-tenancy. In order to
effectively provide cloud computing federation with cloud intrinsic characteristics such as multi-
tenancy, virtualization, and service oriented architecture (SOA) fine-grained cloud oriented access
control models are required.

In this dissertation, we propose a set of access control models to enable federation in the cloud
TaaS platform. Our contributions are categorized into two federation models, Peer-to-Peer model

where trust is established between two tenants and Circle-of-Trust model where a group of tenants
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adhere to agreed policies and interfaces to collaborate. In Peer-to-Peer federation, role-based and
attribute-based models are proposed to enable cross-tenant access. We extend existing multi-tenant
approaches into multi-cloud role-based access control model providing cross-cloud user assign-
ments. Moreover, a novel attribute-based access control model providing Peer-to-Peer federation
between tenants in a cloud IaaS, as well as more generally, is proposed. Our approach allows cross-
tenant attribute assignment across tenants. Particularly, tenant-trust authorizes a trustee tenant to
assign its attributes to users from a trustor tenant, enabling access to the trustee tenant’s resources.

In Circle-of-Trust federation, we propose a suite of multi-tenant role-based, role-centric, and
tenant-trust models in the context of homogeneous and heterogeneous circles. In a homogeneous
circle with uniform tenant types, role-based approach allows tenants to equally assert cross-tenant
user assignments. In role-centric attribute-based model, attributes are added to differentiate tenants
in heterogeneous circles with non-uniform tenant types. Attributes are used to limit user-role
assignments with respect to tenant types. Tenant-trust model provides user-role assignment in
homogeneous and heterogeneous circles enabling federation in the circle. Particularly, it specifies
user-role assignments with respect to rules and policies in the circle.

As a proof of concept, we demonstrate the feasibility of the proposed multi-tenant multi-cloud
access control model by integrating into an open-source cloud laaS platform. Particularly, Open-
Stack identity service is extended in an OpenStack to OpenStack federation, providing user-role
assignments across distinct domains across different OpenStack clouds. Our implementations have

minimal impact on administration and no impact on operation performance in OpenStack.
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Chapter 1: INTRODUCTION

Cloud computing has revolutionized the way that IT resource are available to organizations [39].
It is altering the way software is developed, deployed, adopted, and paid for. Cloud computing
brings on-demand devices with unlimited pool of computing power to mainstream. Its advantages
are beyond just the drop in costs. It changes the way enterprises invest in their computing, storage,
security, and applications.

A significant benefit of cloud computing is the elasticity and dynamicity it provides for cloud
consumers in addition to advantages such as security, disaster recovery, etc. Cloud computing
benefits over traditional computing is favored in tasks where demand for services varies in time,
is unknown in advance, and demand for processing can be distributed over resources [2]. Stated
characteristics by NIST [40] for cloud computing such as on-demand self-service, resource pool-
ing, and rapid elasticity also emphasize the flexibility as an essential feature of clouds. Federation
mechanisms are essential to further enhance flexibility and dynamicity of cloud platforms’ service
delivery. Federation binds distinct cloud platforms with trust relationships to share resources and
services.

Moreover, cloud computing characteristics such as infinite computing resources on demand,
no up-front commitment, and pay-per-use makes it ideal to fill organizations’ IT portfolio with de-
ploying their resources in the cloud [3]. Enterprise work-flow intrinsically mandates collaboration
across its tenant boundaries as well as with associated organizations’ tenants. A major challenge
in cloud adoption is fine-grained collaboration models in cloud platforms.

Cloud service providers utilize multi-tenancy to share underlying physical infrastructure within
tenants in cloud IaaS. Cloud providers segregate the resources and customer’s data into tenants to
protect data privacy and integrity. In cloud, tenants are isolated containers with tenant-specific vir-
tual computing environments where each tenant corresponds to an organization, a department of an
organization, or an individual who uses cloud services. In this scenario, each tenant is considered

as a cloud customer with resources whose integrity and privacy must be protected. Multi-tenancy



adoption signifies necessity of collaboration between cloud consumers’ tenants across a single-
cloud or a multi-cloud environment.

Multi-tenancy requires collaboration to dynamically enable access to resources across tenants
in a single-cloud IaaS [56] or in multi-cloud federation where tenants are located across distinct
cloud platforms [4]. Multi-cloud collaboration paradigm allows cloud consumers to avoid vendor
lock-in as well as enables providers to avoid limitation of restricted amount of infrastructure in
cloud IaaS [55].

Currently cloud platforms such as Amazon AWS [1], OpenStack [48], and Microsoft Azure [41]
offer federation APIs to enable collaboration between tenants. Tenant concept in AWS is repre-
sented by an account, in OpenStack by a domain, and in Azure by Active Directory tenant. Multi-
tenant multi-cloud models proposed in this dissertation extend current federation APIs in cloud

platforms such as OpenStack to role-based [54] and attribute-based [28] access control models.

1.1 Motivation

At the dawn of cloud systems, the multi-tenancy concern was resource segregation, whereas recent
enterprise cloud adoption has raised the issue of multi-tenancy resource sharing. Collaboration in
cloud IaaS is generally categorized into cloud bursting and cross-tenant access [63] scenarios.
Cloud bursting scenarios allows private clouds to establish partnership with a public cloud to
utilize infrastructure resources [43]. The drive for multi-tenant collaboration arises from at least
two distinct directions. First, a large organization may utilize multiple tenants for security and
reliability, where each tenant represents a department. Such tenants are located in a public cloud
or across public and private clouds. For example, an organization’s financial department processes
sensitive financial data while its marketing department publishes open information to the public.
For privacy and integrity measures sensitive data must not be co-located with public data in a
tenant. Distinct tenants with different security measures are required but yet may need controlled
collaboration. Second, distinct enterprises may have collaborative tasks across their corresponding

tenants. Collaboration between enterprises requires mechanisms to establish the collaboration and
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Figure 1.1: A Multi-Tenant Collaboration Example

at task completion to disband it.

To motivate the problem, consider the example illustrated in Figure 1.1, which depicts an or-
ganization with multiple tenants in a cloud service provider. We use HP as an organization with
multiple locations and departments. In such organizations it is not feasible to locate all data and
users into one tenant due to different security and reliability levels required as well as organiza-
tional structure. Creating user accounts across each collaborating tenant is impractical, whereas
supporting access to shared resources is much more practical.

Consequently, users in one tenant can access resources in another tenant consistent with cross-
tenant trust relationships. It is natural for software development, testing, and support teams to
collaborate. Software developers such as Alice can access cross-tenant resources in Software
Testing and Software Support tenants to perform their assigned tasks. Enabling seamless col-
laboration across tenants is essential for the overall organization. Similar scenarios arise for cross-

organization collaboration.
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Figure 1.2: A Multi-Cloud Collaboration Example

Another collaboration example occurs when multiple organizations such as an inter-university
research community collaborate to share data and processing power within a trusted community
of researchers, illustrated in Figure 1.2. This Figure is based on the European Organization for
Nuclear Research (CERN) which currently has 110 petabytes od data and 50 petabytes are added
each year. The amount of data stored in participating institutes is so large that transmitting data
to perform analysis is not practical. Moreover adding accounts for all the participating institutes’
users in each individual cloud is also impractical.

Collaboration across institutes is achieved via an inter-university research community called
CERN. We have two CERN member universities Acme and Zenith running OpenStack as their
cloud platform. Bob is a professor in physics tenant in Zenith. For Bob to properly perform his
analysis he should have access to Acme Cloud’s project Condensed Matter. There should be cross-
cloud access which enables Bob to perform his analysis. This can allow Bob to create a virtual
machine (VM) in Acme cloud’s Condense Matter project and perform analysis. Meanwhile David
a postdoc in Acme Cloud requests to access Molecular tenant in Zenith Cloud This example is a
typical use case for collaboration among multiple cloud providers. There are, similar use cases
such as an organization which has resources distributed across multiple cloud service providers

for certain security reasons and wishes to merge the administrative controls over all resources
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while each cloud still has separate administration. By enabling cross-cloud access we achieve the

following benefits.

e We eliminate the need to provision users in every collaborating organization.
e Inter-cloud and intra-cloud assignments are differentiated and administered separately.
e Each participating organization has some degree of control over organizations’ relationship.

Current federation APIs provide peer-to-peer collaboration where trust is established between
a pair of tenants. Peer-to-peer trust is generally more appropriate when tenants’ collaborative
specifications cannot be extended to additional tenants. It is preferable due to limited trust, and
presumably enhanced security. Recently, considerations on collaboration within a group of tenants
has been considered in different contexts which is denoted as circle-of-trust. In a circle-of-trust,
common policies and rules applies to participating partners.

To better clarify circle-of-trust concept, consider the example in Figure 1.3 where ACME, a

multinational technology corporation aims to implement its enterprise requirements with cloud

services.



ACME migrates its IT infrastructure to a public cloud service provider where each tenant rep-
resents a department. ACME utilizes multiple tenants to satisfy distinct security levels required for
each department. For example, Finance Dept. resources should not co-locate in the same tenant
with Research & Development Dept., as Finance Dept. retains sensitive data. Furthermore, ACME
organizational structure demands collaboration between its departments which is thereby required
in its cloud adoption. To this end, ACME establishes a circle-of-trust among its tenants in the
cloud and starts adding its tenants to the circle. For instance a new tenant created as Sales tenant in
ACME, requests to join the circle. Adding additional tenants requires all ACME circle members
to agree on trusting the new Sales tenant. When Sales tenant joins the circle, it trusts members

assertions and its assertions are likewise trusted by other ACME circle members.

1.2 Problem Statement

Role-based access control [17,54] (RBAC) has been the dominant access-control paradigm for
over two decades. While RBAC initially designed for a single organization [62], through many
extensions proposed in the past decade it has been extended to encompass collaboration [59, 61].
The majority of RBAC extensions are not applicable to cloud IaaS directly. They enable collabo-
ration to some extent but in terms of trust management administration and agility, limit the cloud
TaaS features. Nevertheless, various limitations of RBAC have been recognized over this period
and increasingly there is a push to move towards attribute-based access control [27,28,53] in gen-
eral. ABAC advantages over RBAC specifically in cloud computing have been discussed in the
literature [14]. Although considerable research has been devoted to attribute-based access control
in the past decade, rather less attention has been paid to multi-tenancy and collaboration in ABAC.

Effective collaboration in multi-tenant cloud IaaS platforms requires generic models specifi-
cally built to acknowledge cloud characteristics. Current cloud platforms support partial federation
mechanisms, they realize access control models in different manner and treat roles and attributes
variously. For instance, current cloud platforms such as OpenStack implements RBAC with dit-

ferent interpretation of role and permissions from the standard RBAC. Policies heterogeneity in

6



cloud platforms make inter-operation across tenants more complicated. More specifically different
realization of roles and attributes create semantic mistmatch for collaboration across tenants.

Fine-grained cloud collaboration models must provide a clear notion of trust. Establishing trust
across tenants in cloud IaaS, administering trust relationships, and how trust affects each cloud’s
resources privacy and integrity are issues raised in cloud collaboration. Current cloud providers
support basic trust across domains in OpenStack or accounts in AWS, however trust adminstration
and extended collaboration models such as Circle-of-trust trust are not supported.

In Peer-to-Peer collaboration model, trust is established between a pair of tenants and upon type
of trust relationship each tenant may authorized to assign users to resources across trusted tenant.
Besides two tenants, collaboration can also be established between a set of tenants where tenants
adhere to a common set of policies, trust relations and collaboration interfaces within a circle. We
denote this collaboration model as a circle-of-trust. Current cloud platforms support Peer-to-Peer
partially from account delegation in AWS to OpenStack cross-domain user assignments which is
limited to simple Peer-to-Peer trust. Currently, cloud platforms are not cultivated to support various
collaboration models such as Circle-of-Trust.

While multi-tenancy architecture brings economical and infrastructure utilization to cloud com-
puting, segregating users and resources into tenants diminishes inter-operation efforts. In this
architecture, each tenant has its own set of roles and attributes which tighten collaboration. Del-
egating appropriate access rights to users in cross-tenant access is crucial to overall cloud IaaS
integrity and privacy. In a multi-tenant environment, access control administrative model must ad-
minister intra-cloud policies distinguishing inter-cloud policies. To that end, it is critical to manage
authorization derived from trusting a tenant or trusted by a tenant.

Also policy decision points must be responsive enough where a large collection of policies
controlling a shared resource in multiple tenants. The number of policies involved in access to
cross-tenant resources affects the performance and results in policy inefficiency as redundancy and
verbosity. If two policies matches same access request considered redundant. Policy integration

can merge similar policies from multiple origins. Resolving the policy verbosity during composi-



tion leads to smaller policy size. Participating clouds must have authorization to specify constraints
on policies to better control the multi-cloud relation. In a multi-cloud fashion policy enforcement
points (PEPs) are distributed across clouds. PDPs are hosted in each cloud service and it is required
that communication between services exist to retrieve necessary data for policy decision points.

Multi-cloud and distributed systems share similarities as both promise utility computing. Col-
laboration in distributed systems have been extensively researched for over two decades. However,
cloud computing offers virtualization through hypervisor technology such as virtual machines,
dynamically provisioned resources on-demand as a service which is accessible via Web service
technologies such as SOAP and REST. Further, cloud computing offers services segregated to
tenants where users and resources are owned by tenants. To this end, different characteristics of
cloud computing accordingly makes prior role-based and attribute-based collaboration access con-
trol models impractical to apply for cloud collaboration directly. With this outline, we state our
problem statement as following:

Current access control models provided by cloud platforms are not sufficient to cultivate effec-
tive peer-to-peer and circle-of-trust collaboration between tenants in a cloud or across multiple
cloud platforms. Prior role-based and attribute-based access control models in distributed systems

are not effectively applicable to cloud laaS.

1.3 Scope and Assumptions

In this dissertation, we scope our contributions to Infrastructure-as-a-Service, homogeneous cloud
platforms, Peer-to-Peer and Circle-of-Trust, and authorization federation. We identify collabora-
tion in cloud computing upon characteristics such as service levels, cloud platforms, trust, and
entity coupling illustrated in Figure 1.4.

Cloud computing offer software, platform, and infrastructure-as-a service (SaaS, PaaS, and
[aaS) levels. Collaboration in cloud occurs between each service layer where in laaS, services
offered are homogeneous since provided service are generally computation, storage, networks, etc.

However, in SaaS and PaaS services can be of heterogeneous type, such as Google account which
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is a federation of heterogeneous services from Email and storage to mobile payments. In service
levels, we focus on IaaS cloud platforms. Further, cloud platforms involved in collaboration based
on deployment model form homogeneous and heterogeneous cloud federation. Access control
models proposed are within homogeneous platform cloud federation.

In collaboration, trust established between cloud platforms (or tenants) define collaboration
model enabled. Two distinct types of trust aries commonly in cloud collaboration scenarios, Peer-
to-Peer and Circle-of-Trust. In this dissertation, our access control models trust scope are Peer-to-
Peer and Circle-of-trust.

Moreover, in a cloud federation users accessing resources which are not located in their home
tenant, therefore users must be authenticated prior to granting access. Authentication federation
in coupling of cloud platforms which is concerned with authenticating users in clouds other than
their home cloud (where they are initially authenticated). Further, authorization federation focus
on authenticated users’ access rights in resource provider cloud (or tenant). With this outline,
we scope our contribution depicted in Figure 1.4 as authorization federation in Peer-to-Peer and
Circle-of-Trust within homogeneous IaaS multi-tenant cloud platforms. This research is conducted
with the following assumptions.

Standardized Cloud APIs. In order to develop collaborative access control models, cloud



platforms must have fundamental identity service functionalities as authentication, authorization,
etc.

Federation APIs. We assume current cloud platforms have fundamental federation functional-
ities to generate and consume attributes such, for instance, SAML assertions in OpenStack feder-
ation APIL.

Authenticated Users. In this research, we assume users requesting access are already authen-
ticated properly to better focus on authorization federation.

Platform homogeneity. We assume cloud platforms are homogeneous. We scope our contri-
bution to homogeneous platforms to better focus on collaborative access control models.

Tenant Trust. For simplicity we define trust between tenants with two model of collaboration
Peer-to-Peer and Circle-of-trust as follows. Peer-to-Peer Trust. Trust between two tenants are
considered as unidirectional, unilateral and non transitive trust relations (see section 3.4). Circle-
of-Trust. Trust between tenants in a circle-of-trust is considered as multilateral, bidirectional,
transitive relation in homogeneous circles, and multilateral, unidirectional, non-transitive relation

in heterogeneous circles (see section 3.4).

1.4 Thesis

The central thesis of this dissertation is:
The problem of authorization federation in multi-tenant cloud laa$S can be partially solved by
integrating multiple types of peer-to-peer and circle-of-trust relations between tenants in single-

cloud and multi-cloud environments into role-based and attribute-based access control models.

1.5 Summary of Contributions

We summarize our contributions into Peer-to-Peer policy, Circle-of-Trust policy, and implementa-
tion in this dissertation.

Peer-to-Peer Policy. In Peer-to-Peer federation model, we define a multi-cloud multi-tenant
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role-based access control model and a multi-tenant attribute-based access control model (MT-
ABAC) for cloud IaaS. Multi-cloud role-based model extends tenant-trust [59] type «, (3, and
~ in addition to type ¢ to tenants across homogeneous multi-cloud IaaS platforms. In our model,
trust is defined as tenant-trust, authorizing trustor or trustee tenant to make user-role assignments
upon applied trust type (o, 3, 7, and 9). MT-ABAC, provides collaboration in an attribute-based
multi-tenant cloud IaaS. Our approach allows cross-tenant attribute assignment to provide access
to shared resources across tenants. Particularly, tenant-trust authorizes a trustee tenant to assign its
attributes to users from a trustor tenant in type-(3, enabling access to the trustee tenant’s resources.
Additionally, type-« is defined to authorize trustor tenant to assign its attributes to users from a
trustee tenant and type-vy authorizes trustee tenant to assign trustor tenants’ attributes to its users.
We also demonstrate that MT-ABAC can be configured to enforce MT-RBAC thus subsuming it
as a special case. In general, tenant-trust in our Peer-to-Peer polices are defined as unilateral,
unidirectional, and non-transitive relations.

Circle-of-Trust Policy. In Circle-of-Trust federation model, we elaborate a multi-tenant role-
based access control model (MT-RBAC,) and a multi-tenant role-centric attribute-based access
control model (MT-RABAC,). In a Circle-of-Trust, we identify two types of circle, homogeneous
circle where entities are from uniform type and heterogeneous circle which is an association of
non-uniform entities. To this end, multi-tenant roles-based model enables collaboration in homo-
geneous circles, allowing tenants to equally assert cross-tenant user assignment. In a homogeneous
circle, member tenants trust each other where trust is defined as tenant-trust. We define two types
of tenant trust in Circle-of-Trust, ¢ and ( enabling user-role assignment in the circle. Particu-
larly, type-e tenant-trust authorizes user-owner tenants to assign their users to public-roles in the
circle and type-( tenant-trust authorizes role-owner tenants to assign users in the circle to their
public-roles. Further, in multi-tenant role-centric attribute-based model attributes are associated
with user, object, and tenant components to distinguish user-assignments where tenants are differ-
entiated with type in the heterogeneous circle.

Implementation. Presented models are implemented in OpenStack cloud platform as an open-
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source cloud laaS. OpenStack identity service federation APIs, support fundamental trust between
cloud platforms in which extended with tenant-trust within a single-cloud and multi-cloud enabling
cross-tenant user-assignments. The results represents that the extended tenant-trust implementation

introduces minimum administration overhead and without any operation performance adjustment.

1.6 Organization of Thesis

Chapter 2 gives a literature review of the related works including cloud federation, role-based
and attribute-based access control models, federation, and OpenStack architecture with federation
extensions. In Chapter 3, we review our framework in terms of cloud federation, multi-cloud,
our cloud federation framework, and tenant-trust following by scope of contributions. Chapter 4
presents Peer-to-Peer federation model with role-based tenant-trust in multi-cloud IaaS with Open-
Stack implementations. Administrative model in terms of establishing tenant-trust and user-role
assignments is demonstrated as well. In Chapter 5, we consider multi-tenant attribute-based access
control model in Peer-to-Peer federation model. Peer-to-Peer tenant-trust is established as attribute
assignment across tenants. The model is formalized and further we demonstrate our models is ca-
pable of MT-RBAC as a special case. In Chapter 6, Circle-of-Trust federation in homogeneous
and heterogeneous circles elaborated. Moreover, a role-based access control model in circle (MT-
RBAC,) is demonstrated enabling user-role assignments in homogeneous circles and a role-centric
attribute-based models in Circle-of-Trust is presented. Chapter 7 concludes the dissertation and

discusses the future work.
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Chapter 2: BACKGROUND AND RELATED WORK

This chapter review prior relevant work on role-based and attribute-based access control mod-
els, federation, and current OpenStack identity service. We review cloud federation concepts in
section 2.1. We summarize related prior research on role-based and attribute-based models in sec-
tions 2.2 and 2.3 respectively. Finally, current OpenStack cloud platform identity service and its

federation extensions are reviewed in section 2.4.

2.1 Cloud Federation

Several computing paradigms such as cluster computing [12], grid computing [20], and now cloud
computing have promised utility computing vision where users access services based on their
need without knowledge of how services are delivered. Grid computing is a type of parallel and
distributed system that enables the sharing, selection, and aggregation of geographically distributed
autonomous resources dynamically at runtime [6].

Cloud computing shares similarity in utility vision with grid computing, however it is more
oriented towards services. Cloud computing consists of virtualized resources which are dynami-
cally provisioned and presented as a ubiquitous, on-demand, and unified computing resource with
measured service [6,40]. Cloud computing provides more service oriented architecture (SOA) as
a unified computing resource with virtualized resources rather than more application oriented grid
computing. The core phenomena of cloud computing is that users can access services indepen-
dently without reference to the underlying hosting infrastructure.

Resource sharing among organizations is not a new concept, Virtual organizations [45], have
been developed in the grid computing community since 2001 which is comparable to federation
in cloud with similar concepts and characteristics. Federation for resources sharing has been re-
searched extensively in grid computing and distributed systems with respect to distributed trust,
resource allocation, multi-domain access, etc. For instance, Condor-G [21] enables users to access

multi-domain resources as tough they all belong to a single domain. It presents a single system
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view of multiple distributed resources including clusters of computers regardless of their domain
which creates a global grid designed to run jobs across different administrative domains. Grid
Federation [52] focuses on multi-cluster systems to couple these cluster resources as a part of one
large grid in different scale of cluster, campus, and global grids.

Collaboration among clouds will require cloud characteristic such as multi-tenancy, service ori-
entation, and ubiquitous accessibility which distinguishes it from federation models in grid, cluster
and in general distributed systems. In the literature, collaboration in cloud has been referred in var-
ious fashion as cloud federation [35], inter-cloud [23], hybrid cloud [40], and multi-cloud [50].
Moreover, considering that cloud computing distinguishes service models as Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) [40], collaboration
in cloud may occur in any service model.

In [35], authors define cloud federation as comprising services from different service providers
aggregated to a single pool where the federation of resource migration, resource redundancy and
combination of complementary resources are provided by cloud federation mechanisms. Also, two
types of federation called horizontal and vertical federation are recognized where horizontal feder-
ation occurs within one service model (IaaS, PaaS, or SaaS) and vertical federation spans multiple
service models. Inter-cloud has been used throughout the literature denoting as a cloud federation
term where in [23], authors describe inter-cloud as a model where performance and availability
of services is the purpose of collaboration. It allows reassignment of resources and transfer of
workload through inter-connection of different cloud service providers where each cloud, provides
service level agreements and standard interfaces. Hybrid cloud encompasses two or more types of
cloud deployments as public, community and private as defined by NIST [40]. It is composed of
distinct cloud infrastructures connected with standardized or proprietary technology enabling data
and application portability.

Multi-cloud has been defined in various forms in the literature. In [SO] multi-cloud means usage
of multiple and independent cloud platforms by a client or service. Two categories of multi-clouds

are recognized in [23], service based and library based. In service based, a service is offering
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brokerage between clouds on client side. In library based, set of APIs offer uniform approach
to access resources and services, as well as provisioning of services and resources from multiple
clouds. Another method of collaboration between multiple clouds is using proxies as mediators
between applications across distinct clouds, sharing data and collaboration is discussed in [55].

Moreover, there are implemented systems that provide cloud federation services such as Open-
Nebula [47], Eucalyptus [26], Aneka Coordinator [51], CometCloud [13], OpenStack [48], AWS [1],
and Azure [41]. OpenNebula, Eucalyptus, and OpenStack are open-source cloud platforms which
all offer federation APIs for cloud IaaS. Aneka coordinator is a resource management tool in the
Aneka enterprise cloud to communicate and share resources with other Aneka clouds. It is com-
posed of services to interact with Aneka’s cloud core services providing functional peer-to-peer
scheduling, peer-to-peer execution, and load balancing among the distributed Aneka enterprise
clouds. CometCloud is an autonomic computing engine that enables federation of clouds. Ama-
zon AWS and Microsoft Azure are cloud platforms which both offer federation APIs.

These group of collaborative clouds form federations. A federation can be defined as an orga-
nizational structure where multiple organizations have set up collaborative agreements [16]. Each
organization has a administration and domain coupled to other organizations by trust agreements.
Federation can be specified by its specific characteristics in terms of service, platform, trust and
coupling of organizations (see chapter 3).

In identity federation two concepts arises authentication federation and authorization feder-
ation. A handful of formal standards and protocols have been proposed for web services and
SOA in forms of federation such as SAML [30], OpenID [46], ID-FF [9], Shibboleth [42], WS-
Federation [22], and OAuth [24] where SAML, ID-FF, Shibboleth, WS-Federation, and OAuth
support some type of attribute assertions regarding authorization federation.

Security Assertion Markup Language (SAML) provides a means for exchanging security infor-
mation. SAML specification is general in the kinds of assertions that can be transferred including
authentication and authorization assertions. A major feature of OpenlD is its user-centric approach

which denotes that users can choose identity provide they trust to authenticate. OpenlID is mostly
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an identity protocol and federation is enabled through extensions to allow attribute exchange. ID-
FF is the Liberty Alliance identity Federation Framework, provided on SAML basis to enable
identity federation through single sign-on, identity linkage, and session management. Shibboleth
is an open-source project implementing identity federation based on SAML specifications. It pro-
vides single sign-on and attribute exchange framework used mostly in educational environments.
It provides extended privacy functionalities allowing users’ identity provider to control attributes
asserted to other applications. WS-Federation as part of Web Services Security Framework de-
fines mechanisms to allow different security domains to federate. Authorized access is granted
to security principals whose identity and attributes are originated from another security domain.
OAuth provides a simple way to verify the access level of a request for a web service. Its autho-
rization protocols provide a mechanism for application users to delegate access to a third-party to
work on behalf of the user (within the scope of authorization server and token delegation). While
such mechanisms can be adopted in an authorization federation at the SaaS service level, they
are not suitable for IaaS because determining access rights consist of user attributes in addition
to service providers’ concession. The basic concept of authentication federation is trusted rela-
tionship between identity providers (which can be a cloud service provider in our context) and
service providers. Federation Identity (authentication) Management has been widely researched,
providing solutions by enabling propagation of identity information to services located in different
administrative domains [10, 11].

Cabarcos et al [7] proposed a generic extension for SAML to create identity federation relations
between unknown parties dynamically with certificate based and reputation based trust decisions.
Also Chadwick et al [11] extended identity federation into OpenStack identity service with SAML.

In [36], authentication federation trust requirements in different federation strategies such as
circle-of-trust, and overlapping federations, has been discussed considering direct and indirect trust
relations. The Liberty Alliance Project [9] identified the conceptual framework and guidelines in
a circle-of-trust as part of their federated identity vision. Kylau et al [36] trust requirements in

authentication federation. Boursas et al [5] present circle-of-trust collaboration trust considera-
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tions in authentication federation for assessment of entities’ trust outside the circle. The previous
research with respect to circle-of-trust has concentrated on authentication federation whereas our
scope of contribution lies within authorization federation.

In authorization federation, the issue of granting access to federated users has been discussed in
laaS, PaaS, and SaaS cloud service models. With respect to authorization federation in multi-tenant
cloud IaaS, authors [37] provide shibboleth based identity management. Cloud services authenti-
cate users, providing information to service providers, using Shibboleth underlying authentication
and authorization with SAML assertions. Moreover, based on privacy policies software delivery
model approaches such as Decat et al [16] provide a generic middleware architecture and policy
language for federated authorization in SaaS. Thus middleware provides an architecture between
requesting tenant and SaaS provider policies to mediate the access with extended XACML policy
language [16]. Generally authentication federation has been investigated more extensively than
authorization federation which do not deal with different access control models, policies, different
service deliveries, and cloud architecture platforms in addition to authenticating federated users.
We base our contribution on existing work on authorization federation and scope it to multi-tenant

cloud IaaS federation.

2.2 Multi-Tenant Role-Based Access Control

Role-Based Access Control (RBAC) [17] has been dominant access control paradigm in the current
computer systems for over two decades. In RBAC, a user access request is granted or denied based
on the user role. Furthermore, a role is defined as an abstraction of a set of permissions, and a user
acquires only the permissions assigned to its role. In addition to these assignment relations, the
user access can be restricted based on authorization policies defined within the enterprise. The first
RBAC model, called RBAC96, has been proposed by Sandhu et al [54] as a family of reference
models introducing the concepts of role hierarchy and authorization constraints. The ingenuity
of RBAC lies within its permission abstraction with roles which makes it policy-neutral and its

simplicity to support a wide range of policies. RBAC is simple to perceive and implement policies

17



while it can support fairly complex and sophisticated policies. It has been rigorously extended
beyond its role hierarchy and constraints to support a wide variety of applications in the industry.
The majority of cloud platforms today such as OpenStack implements a variation of RBAC to
determine access rights. RBAC has been extended towards collaboration across multiple organiza-
tions such as ROBAC [64] and GB-RBAC [38]. ROBAC extends RBAC to manage authorizations
in multiple organizations by adding both role and organization for authorization decisions. GB-
RBAC extends RBAC with group entity to support collaboration in distributed environments. It
introduces two level of authorization administration as global and system level, by using system-
level and group-level roles.

Current cloud platforms utilize multi-tenancy to segregate underlying shared infrastructure
where it has been researched in RBAC since the rise of cloud computing. For instance, autho-
rization model demonstrated in [8] demonstrates a multi-tenant authorization model suitable for
cloud supporting multi-tenancy, role-base access control, hierarchical RBAC, path-based object
hierarchies and federation.

Further, in cloud TaaS multi-tenancy and collaboration, tang et al [S9] propose a cross-tenant
trust model (CTTM) in the cloud which encompasses various types of trust relations. Authors
identified three types of cross-tenant trust, type «, (3, and ~. Collaboration in CTTM is proposed
by cross-tenant assignments where trust relations are bridging authorization domains of each ten-
ant. Authors propose a role-based extension (RB-CTTM) where permissions are assigned to roles
across tenants based on defined trust types. Trust is defined as type-a where trustor can give ac-
cess to trustee, type- where trustee can give access to trustor, and type-y where trustee can take
access from trustor. A motivating example of UTSA and AVIS agreement is given where AVIS has
discounted car rental price exclusively for UTSA students. We use this example to explain trust
types elaborated in CTTM. In type-a, AVIS by trusting UTSA in type-a can obtain user informa-
tion in UTSA and assign cross-tenant accesses from UTSA’s users to its permissions. In type-a,
the trustor (AVIS) holds the authority of assigning its own permissions to the trustee’s users and

requires visibility to the trustee’s (UTSA’s) user information. Type-£ trust alters the direction of
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the trust relation in « so the trustor (UTSA) can control the exposure of its user information which
is necessary for the trustee (AVIS) to make cross-tenant authorization assignments. UTSA by es-
tablishing type-( trust with AVIS explicitly exposes its user information to AVIS so that AVIS
can assign its permissions to UTSA’s users based on UTSA’s user information. Type-v enables
both trustor and trustee to control cross-tenant access where by establishing the trust relation, the
trustor delegates the control of cross-tenant authorization assignments to the trustee. If AVIS trusts
UTSA in type-v, AVIS delegates UTSA to assign cross-tenant access from UTSA’s users to AVIS’s
permissions.

Moreover, in [58] a multi-tenant role-based access control model is defined enabling authoriza-
tion in collaborative cloud environments by building trust relations among tenants. The trustee can
authorize cross-tenant accesses to the truster’s resources consistent with constraints over the trust
relation and other components designated by the truster. Trust relation is defined as tenant-trust. If
tenant A trusts tenant B then A’s issuer exposes A’s roles to B’s issuer so that B’s issuer can assign

B’s users to A’s roles and also B’s issuer can assign A’s roles as junior roles to B’s roles.

2.3 Attribute-Based Access Control

RBAC limitations over the time has been recognized such as role explosion, cost in implementing
complex policies, and accommodation of real-time environmental states [14]. Increasingly there is
a push to move towards a more general, flexible, and definitive access control model, specifically
attribute-based access control model [53].

ABAC determining access to objects by evaluating rules against the attributes of entities, sub-
ject and object, on operations, and the environment relevant to a requests [27]. ABAC uses labeled
objects and user attributes instead of permissions to provide access control in a flexible manner. If
a user has the attributes reflected in the objects requesting access to, then access is granted [14].
This flexibility enables creation of access rules without specifying individual relationships between
each subject and each object. Access decisions can change between requests simply by altering

attribute values, without requiring changes to the subject or object relationships defining the under-
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lying rule sets. Converting access decisions to subject and object attributes with rules for actions in
the system provides a more dynamic policy management capability and limits long-term mainte-
nance requirements of object protections. Further, ABAC enables object owners or administrators
to apply policy without prior knowledge of the specific subject and for an unlimited number of
subjects that might require access [28].

Until recently, there was a lack of consensus on ABAC features and formalized models. Re-
cently, NIST [27] published a guide to ABAC which provides agencies with a definition of ABAC
and a description of its functional components. It describes planning, design, implementation,
and operational considerations for employing ABAC within an enterprise to improve information
sharing while maintaining control of that information. Further, Xin et al [31] proposed a unified
ABAC, model covering DAC, MAC, and RBAC. ABAC,, clearly defines a formalized model with
policy configuration points and a policy language. Moreover, authors show that ABAC, can be
used to naturally configure the three classical models. It specifies three components, user, sub-
ject, and object associated with corresponding attributes. In ABAC,, three configuration points
are specified for attribute constraint policies and authorization policies where user attributes con-
strain subject attributes and subject attributes constrain object attributes. Constraints are defined as
functions which return true when conditions are satisfied and false otherwise Authorization poli-
cies are defined as two-valued boolean functions which are evaluated for each access decision. An
authorization policy in ABAC,, for a specific permission takes a subject, an object, and returns true
or false based on attribute values. Authors extended to ABACy with context attributes covering
considerable number of RBAC extensions. We adopt a simplified verism of ABAC,, [31] suitable
for our purpose. In particular it eliminates subjects as being distinct from users as is in ABAC,,
and simply treats them to be equivalent.

Another step towards ABAC is adding attributes to roles in RBAC. In order to address a number
of RBAC limitations such as initial role structure difficulty, role explosion, inflexibility in rapidly
changing domains, Kuhn et al [33] proposed integrating roles with attributes where they identified

three approaches, dynamic roles, attribute-centric, and role-centric. Dynamic roles use user and
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context attributes to dynamically assign roles to users [29]. In attribute-centric, roles are simply
another attribute of users. Since there is no permission-role assignment it discards advantages of
RBAC [31]. In role-centric, attributes are added to reduce the permissions available to the user.
Jin et al proposed a role-centric attribute-based access control model (RABAC) where authors add
attributes to user and object components in RBAC to constrain available permissions. It defines
an independent component called the permission filtering policy (PFP), adding to the existing
components in RBAC. The PFP, constrains the available set of permissions based on user and
object attributes. Motivated by proposed role-centric model in [32], we take a different approach
to add attributes to RBAC for multi-tenancy in cloud IaaS collaboration.

Multi-tenancy in ABAC has been researched in different cloud service delivery models. Decat
et al [15] introduced Amusa, a middleware for access control management of multi-tenant SaaS
applications. Both the provider and the tenants can specify their access rules for the SaaS applica-
tions in attribute-based policies. Amusa pre-defines a fixed set of attributes, which the provider can
extend for its own application and tenants can build on attributes and policies defined by provider
to extend it for their organization (three-layered access control management). Amusa combines
the rules of all parties securely and enforces them at run-time. Further, Ngo et al [44] proposed an
access control model for multi-tenant cloud services using attribute-based access control model. In
this approach access control model is integrated with the cloud infrastructure information descrip-
tion model. Proposed approach generates provider delegation policy automatically from cloud
resource descriptions and support multiple levels of delegations for inter-tenant collaborations.
Tang [57] specified a multi-tenant attribute based access control enabling cross-tenant access for
subjects. Our model differs in structure and cross-tenant access where attribute value assignment
provides collaboration.

Also recently, NCCoE [19] published a building block for attribute-based access control, dis-
cussing potential security risks facing organizations, benefits from the implementation of an ABAC
system and the approach that the NCCoE took in developing a reference architecture and build. Au-

thors discussed ABAC support for business collaboration, following by five steps towards ABAC
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and federation architecture.

2.4 OpenStack Cloud Platform

OpenStack is an emerging open-source cloud IaaS platform. Since its introduction in 2010, it has
rapidly become popular with enterprises. It has been adopted for a wide range of deployments
from public cloud service providers to in-house private clouds. Currently, a wide range of major
IT companies participating in its development. We chose OpenStack to implement our models
because it is open-source and well accepted in the market.

OpenStack cloud platform consists of interrelated components that control hardware pools of
computing, storage, and networking resources where each component is a service in OpenStack
communicating with other service with RESTful APIs [18]. OpenStack core services are Keystone
(identity service), Nova (compute service), Neutron (networking service), Swift (object storage),
Glance (image service), and Cinder (block storage).

Keystone is OpenStack authentication and authorization service. Its core elements are user,
group, role, project, domain, and token. A user represents an individual who can authenticate and
access cloud resources. In Keystone, groups are set of users in which can be assigned to resources
same as users. Roles grant a user or a group set of permitted actions for either a specific project
or an entire domain. Each role is paired with a project or a domain in time of assignment to
users or groups. To that end, roles are associated with users in relation to projects as project-role-
pairs (PRP). A project is the base unit of ownership in OpenStack and each resource is owned
by a specific project while each project is owned by a domain. A project represents a tenant in
OpenStack. A domain is an administration scope of users, groups, and projects. Each user, group,
and project is owned by exactly one domain. In Keystone, token represents the authenticated
identity of a user granting authorization on a specific project or domain. In [60], OpenStack access
control model is identified with respect to its core elements and operations.

Keystone is organized as a group of internal services as identity, resource, assignment, token,

catalog, and federation. We focus on its current state towards federation. The identity service
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Figure 2.1: Adding Federated Identity Management to OpenStack.

provides authentication validation and management of users and groups data. Resource service
manages data about projects and domains. Assignment service provides data about roles and role
assignments to the entities managed by the identity and resource services. Token service validates
and manages, tokens that are used for authenticating requests once a user’s credentials verified.
Two types of tokens are implemented in Keystone (In Juno release) PKI and UUID. In this disserta-
tion’s implementations, we use PKI token format where each PKI token maintains user credentials,
target projects, assigned roles to projects and service catalogs in its payload. Catalog service pro-
vides endpoint registry and endpoint discovery mechanisms in Keystone. Policy service provides
rule-based authorization engine used for implementing policies in Keystone. Federation service
provides federation APIs including registering identity providers, service providers, protocols, and
mappings in addition to create and consume SAML assertions.

Keystone federation service enables Keystone to provide SAML assertions and consume these
assertions. In Icehouse release [49], Keystone federation service added to federate OpenStack with
an identity provider (Idp), meaning a trusted Idp was able to federated its users to access resources
in OpenStack. In [11], Identity federation to OpenStack is discussed. Figure 2.1 depicts such
enforcement model which is based on OpenStack Icehouse federation API. In this model, an Idp

is federated to OpenStack Service Provider enabling Idp’s users to access resources in OpenStack
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Figure 2.2: Keystone to Keystone Federation.

while they are authenticating to their local Idp. Figure 2.1 enforcement is as following: (1) User
requests to access a service in Service Provider. (2) Service Provider determines user Idp. (3) User
is redirected for authentication to it’s Idp. (4) User presents its credentials and authenticate to its
local Idp. (5) Idp redirects users’ attributes. (6) SAML assertions are presented to Service Provider,
from this stage user is mapped to local user or group and act as normal user in OpenStack.

Since OpenStack Juno release, OpenStack is capable of generating SAML assertion enabling it
provide Keystone to Keystone federation. Figure 2.2 depicts Juno Keystone to Keystone federation
in OpenStack.

Current Keystone federation service includes following APIs, Identity Provider, Protocols,
Mappings, and Service Provider. Identity Provider (Idp) and Service Provider (SP) holds infor-
mation about trusted Idps to accept assertions from and trusted SPs to send assertions. These
information includes protocols, IP addresses, and descriptions about Idp and SP. Protocol contains
information that dictates which mapping rules to use for a given incoming request. An IdP may
have multiple supported protocols. Mapping is a set of rules to map federation protocol attributes

to Identity API objects. It is used to map federated credentials to local credentials.

24



Chapter 3: FEDERATION FRAMEWORK FOR CLOUD

This chapter introduces our cloud federation framework elaborating our perspective of federation
and multi-cloud in the context of our scope of homogeneous multi-tenant multi-cloud IaaS. We
define our federation framework with Peer-to-Peer and Circle-of-Trust federation models followed
by tenant-trust and defined types of trust respectively. Finally, our scope of study and a taxonomy

of contributions in this dissertation is discussed in the context of this framework.

3.1 Federation

In real life, collaboration among organizations is inevitable due to growing challenges of global
competition, rapid changes and increasing complexity of organizational structures. Organizations
should be able to quickly come together and collaborate to solve a specific problem or exploit
a specific opportunity. Such a group of collaborative organizations establishes a federation. A
federation can be defined as an organizational structure where multiple organizations have set up
collaborative agreements. Each organization has a separate administration and domain connected
to other organizations by trust agreements. The concept of federation has a long and varied history
in computer systems. Just as one example, the notion of virtual organizations has been developed
in the distributed systems and grid computing communities going back almost two decades. It is
beyond the scope of this dissertation to give a comprehensive review of federation in computer
systems, rather our focus is on cloud federation. For simplicity we will henceforth understand the
term federation to mean cloud federation. Cloud federation is a multi-faceted concept and has been
treated in different ways in the literature. A cloud federation can be defined as a collaboration of
cloud service providers and identity providers in order to share their services and resources within
participating clouds based on trust agreements.

In the following we characterize cloud federation compliant with NIST definition of cloud
computing [40]. We can distinguish cloud federations with service, platform, trust, and identity

properties in a federation, illustrated in Figure 3.1.
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Figure 3.1: Characteristics of Federation in Cloud Computing.

Cloud federation offers collaboration between different service layers,i.e., Software, Platform,
and Infrastructure-as-a-Service in the cloud [40]. In IaaS, offered services are processing, storage,
networks, and other fundamental computing services which are homogeneous computing services.
However, SaaS and PaaS span a wide range of services from provider’s applications running on a
cloud infrastructure to consumer-created applications using programming languages supported by
provider which are typically heterogeneous services [40].

Cloud computing offers different deployment models such as private, public, and hybrid [25]
where cloud platforms support different policy models. Cloud federation between homogeneous
deployments such as two OpenStack public or two OpenStack private clouds forms a homoge-
neous federation. On the contrary, federation of an OpenStack private cloud with a proprietary
public cloud such as AWS or Azure would form a heterogeneous cloud federation with respect to
platform.

Trust in cloud federation defines contracts specifying obligations and rights each party has and
policies to follow. Two fundamental federation models arise in cloud federation trust models first,
where tenants establish trust directly between each other and second, where trust is established
by a group of tenants. In Peer-to-Peer trust agreement trust is established between two tenants
directly, as depicted in Figure 3.2. In the commercial setting, federating tenants with Peer-to-
Peer trust is more common due to limited trust, and presumably enhanced security. Moreover,

establishing Peer-to-Peer merely requires collaborating tenants’ trust negotiation. Further, in a
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Figure 3.3: Circle-of-Trust Federation Model.

group of tenants where trust is established across an association of tenants called Circle-of-Trust,
illustrated in Figure 3.3. In a Circle-if-Trust, tenants adhere to policies and contracts established in
the circle to collaborate. To become a circle member, tenants are required to adhere to the tenant-
trust specifications, in particular to demonstrate that circle policies are respected and enforced.
Moreover, based on circle governance tenants requesting to join the circle must be accepted by
circle tenants. In this dissertation, we consider collaborative governance, where all the tenants
share the governance of the circle (see section 6.1). For instance, CERN is a Circle-of-Trust cloud
federation in which institutions joining the circle of institutions can gain certain access to analytic
data and computation resources across their home tenants.

In cloud federation scenarios, users are federated to access services and resources outside their
home tenant adminstration domain. Identity federation aims at authenticating and authorizing users
across their resident tenants. Authentication federation process allows a single user to authenticate
across multiple IT systems or even organizations, such as single sign-on. Authorization federation
aims at determining federated users’ permissions to access federated resources and services. In this
dissertation, our focus is on authorization federation in multi-tenant cloud IaaS. In authorization
federation, both trustor and trustee tenants must be allowed to control federated users and resources

in a trust relation. For instance, if tenant A trusts tenant B, tenant A is trustor tenant and tenant B
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is trustee tenant. We further discuss these concepts in the following sections.

3.2 Multi-Cloud

In this section, we elaborate our perspective on cloud federation and multi-cloud. In general, cloud
federation can be of interest to customers as well as cloud service providers. Cloud consumers
profit from lower cost, performance improvement, and more sophisticated services while service
providers benefit from collaboration scenarios such as cloud bursting and load balancing. Common
terms used for federation in cloud are multi-cloud, cloud federation, hybrid cloud, and inter-cloud.
First, we describe our view of cloud federation and multi-cloud, specifically scoped to our focus in
authorization federation IaaS, then we briefly present a taxonomy of federation in cloud laaS.

In this dissertation, we adopt on the following meanings for cloud federation and multi-cloud.
Cloud Federation 1s a federation of cloud service providers and identity providers to share services
and resources based upon trust agreements. Multi-Cloud is a federation of multiple cloud service
providers (public, private, or hybrid) within different administrative domains (Cloud and Domain)
to provide complex services at specified service model (Infrastructure, Platform and Software). In
the rest of this dissertation, we adhere to these definitions.

The difference between cloud federation and multi-cloud is denoted by the degree of collabo-
ration and by the way users interact with the cloud. In our view, cloud federation is more seamless
collaboration compare to multi-cloud. Cloud federation services are shared without user consen-
sus, meaning user interacts with one cloud and is unaware of resources and services origin such
as cloud bursting or provisioning VMs’ location whether it is in the home tenant or a federated
tenant. In contrast, in multi-cloud federation users are aware of being federated to another cloud,
using client or cloud APIs for federation. In multi-cloud federation user can choose to be federated
with proper credentials. Moreover, in cloud federation, collaboration type is voluntary and there
is an agreement between clouds to share resources whereas multi-cloud does not imply voluntary
interconnection and sharing of providers’ infrastructures.

Hybrid cloud is defined by NIST as “a composition of two or more distinct cloud infrastruc-
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tures (private, community, or public)” [40]. We consider hybrid cloud as type of multi-cloud that
connects clouds in terms of their deployment models. Multi-cloud is a more general term in com-
parison to cloud federation and hybrid cloud.

Inter-cloud definitions are commonly coupled with a broker agent or a broker service for re-
assignment of services and workload for the purpose of performance considerations. Generally, a
broker refers to a service that acts as a client to provision resources and deploy application compo-
nents. We identify an inter-cloud as a cloud federation or multi-cloud model with a broker service
that offers dynamic service provisioning. Figure 3.4 illustrates our conceptual classification of fed-
eration in cloud IaaS. Within our scope, we consider federation in the multi-tenant homogeneous
cloud platforms where each cloud is distinct and remains autonomous. In this framework, we focus

on authorization federation considerations across tenants.

Administrative Domains in Multi-Cloud

In authorization federation, trust defines administrative authority granted to each party over trust
relation and federated assignments. In this concept, the domain in which trust is established identi-
fies resources federating with the specified trust relationship such as services, resource containers,
operations, or data objects. Thus, we identify two administrative domains in cloud federation,
cloud and tenant. To clarify this concept, we illustrate conceptual trust in Figure 3.5 in an Open-

Stack cloud platform. In OpenStack domain represents tenant concept.
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In an IaaS cloud system, cloud domain holds authority over services such as compute, storage,
network, and identity, as well as over lower administrative domains such as tenants. In a cloud-
trust between two clouds, services are federated aiming at load balancing within a multi-cloud
federation. Cloud bursting scenarios are of cloud service providers interest, for example a private
cloud can establish a cloud-trust between its private cloud and a public cloud provider to perform
resource allocation and outsourcing in peak usage or when it is running out of resources. Figure 3.6
depicts such service federation in cloud-trust.

A tenant 1s an administrative domain of resources in a cloud such as users, groups and projects
in OpenStack. In a tenant-trust users and resources are federated through assignments. In tenant
domain, with proper tenant-trust, users are enabled to access resources beyond their home tenant.
In this dissertation, we define a set of tenant-trust relations in tenant domain to enable user-role
and attribute assignments in Peer-to-Peer and Circle-of-Trust federation models. In the following

section we discuss tenant-trust relationships in cloud IaaS.

3.3 Cloud Federation Framework

The building block of federation is trusted relationship. We elaborate trust between tenants in
multi-tenant multi-cloud platforms. Federation patterns defined are solely based on direct trust

where trust relationship exists between two tenants. In Peer-to-Peer federation, a tenant trusts

31



Peer-to-Peer Trust
/\
Initiation Bilateral Unilateral
/\/
Direction Bidirectional Unidirectional
/\/
Transitivity Transitive Non-transitive

Figure 3.7: Peer-to-Peer Trust Characteristics.

(trustor tenant) another tenant (trustee tenant) directly, similarly in Circle-of-Trust a tenant trusts
a group of tenants directly. In our scope a direct trust relationship exists between tenants in Peer-
to-Peer trust and Circle-of-Trust. In a Circle-of-Trust every two tenants only belong to one circle
without overlapping circles where two tenants trust each other through more than one circles.
Although indirect trust and overlapping circles can be easily derived from federation patterns in
this dissertation.

Peer-to-Peer federation pattern is most common collaboration model in industry, for instance,
current cloud platforms such as OpenStack and AWS implements Peer-to-Peer federation in their
cloud APIs. Peer-to-Peer (P2P) model can be extended to cover more complicated types of feder-
ation such as undirected delegated trust (where a trust relationship does not exist directly between
tenants). In a Peer-to-Peer federation, trust relationship is characterized by initiation, direction,
transitivity properties between two tenants as depicted in Figure 3.7.

P2P-Initiation (Bilateral vs. Unilateral). Trust initiation is regarding agreement on trust
establishment. In a bilateral trust, both tenants are required to confirm trust relation whereas in
unilateral trust, trustee tenant’s consent is not required. In tenant administration domain, unilateral
trust is preferred for simplicity and ease of administration and operation while in cloud administra-
tion domain, trust is required to be bilateral, e.g., for cloud bursting scenarios both clouds consent
is required.

P2P-Direction (Bidirectional vs. Unidirectional). In a bidirectional trust relation both par-
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ticipating tenants are equally enabled by the trust. Conversely, in a unidirectional trust, the actions
are available only on one side or the other. We note that bidirectional trust in fact comprises two
unidirectional trust relations, so thereby we can extend unidirectional trust to bidirectional easily.
In Peer-to-Peer federation unilateral trust typically leads to a unidirectional trust because trustee
consent is not required enabling both tenants equally is not reasonable, on the other hand bilateral
Peer-to-Peer trust can be essentially bidirectional or unidirectional.

P2P-Transitivity (Transitive vs. Non-Transitive). In a Peer-to-Peer federation we consider
direct or non-transitive trust. Transitive or indirect trust is characterized by the fact that there is
not a direct trust relationship between two tenants. Instead both tenants have a trust relationship
with a common third tenant. This relationship leverages trustworthiness of unknown federated
partners based on mutual trust with a third trusted partner. Unidirectional trust is essentially non-
transitive due to the fact that directed trust is unilateral and trustee, and trustor tenants are not
equally authorized in Peer-to-Peer federation.

In this dissertation, tenant-trust in Peer-to-Peer federation model is considered as unilateral,
unidirectional and non-transitive trust relationship. Also, tenant-trust is reflexive meaning each
tenant trusts itself.

In a Circle-of-Trust, trust relationships are defined between all circle tenants. We use terms en-
tities and principals interchangeably for tenants. Tenants make assertions (user-role assignments)
in the circle, assigning users to roles. Circle-of-Trust federation eliminates the need to create mul-
tiple trust relationships to collaborate, in addition to simpler administration in contrast to multiple
Peer-to-Peer trust relationships. Circle-of-Trust is applicable to a set of tenants which follow sim-
ilar federation policies and are to some extent authorized to make assertions in the circle similarly.
Further, we discuss in heterogeneous circles that assertions can be limited based on tenant type.
Tenants in the circle adhere to similar authorization and rules to collaborate.

We distinguish trust relationships in the Circle-of-Trust (CoT) with the following properties,
entity coupling, initiation, direction, and transitivity. Figure 3.8 gives a logical hierarchy of these

trust properties discussed below. Vertical placement of characteristics is selected to better illustrate
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Figure 3.8: Circle-of-Trust Characterization.

trust relations in our scope of contribution.

CoT-Entity Coupling (Homogeneous vs. Heterogeneous). In a circle-of trust, type of en-
tities engaging in interactions determines homogeneity or heterogeneity of the circle, shaping its
authorized interactions between tenants. Moreover, with each circle type a set of trust properties
are applicable. By homogeneous circle we denote the case where entities are uniform. For in-
stance a circle of universities forms a homogeneous circle. In a homogeneous circle, collaborating
principals are equally authorized to make cross-tenant authorization assertions. A heterogeneous
circle, is an association of non-uniform entities where each type of entity is authorized specifically
to make certain assertions. For instance, a circle consisting of universities, insurance companies,
and banks establishes a heterogeneous circle. In this scenario, universities can assign users to
discounts in insurance companies while insurance companies cannot assign users to resources in
the universities. In this dissertation we use type and domain interchangeably denoting the type of
entities in a heterogeneous circle.

CoT-Initiation (Multilateral vs. Unilateral). If trust initiation to join a circle is required to
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be confirmed by all circle members, trust is considered multilateral. In special situations when
joining members are not authorized to make assertions (in heterogeneous circles) trust initiation
is not required to be confirmed by all circle members denoted as unilateral trust. For instance a
domain of insurance companies joins a heterogeneous, unilateral circle of institutions. Insurance
entities in the circle are not authorized to make assertions whilst institution entities are authorized
to assert their users to discounts available to universities.

CoT-Direction (Bidirectional vs. Unidirectional). In a circle direction of trust determines
whether both participating circle members have equal authorizations or only one side is autho-
rized to make assertions. If partners are authorized equally to make assertions, trust relation is
bidirectional, otherwise it is unidirectional trust. Homogeneous circles’ relations are bidirectional
while heterogeneous circles support both trust directions. Unilateral heterogeneous circles such
as given example above are only unidirectional in trust relations. Circle of universities is an ex-
ample of bidirectional trust in a homogeneous circle. Sharing files in Dropbox is an example of a
unidirectional trust where a user can share files with a group of users unidirectionally.

CoT-Transitivity (Transitive vs. Non-transitive). In a homogeneous circle, bidirectional
trusts are essentially transitive where all members trust and are trusted by other circle members.
In heterogeneous unidirectional circles, trust relations cannot be transitive. For example in het-
erogeneous unidirectional circle of institutions, considering banks and insurance companies, an
institution can assign students to bank specific account types in banks whilst banks can assign
employees to health insurances in insurance companies. Considering heterogeneous domains in
the circle, a university trusting a bank and a bank trusting an insurance entity does not necessarily
imply that the university can assign students to insurance.

In this dissertation, we consider multilateral, bidirectional, and transitive trust relationship for
homogeneous circles. Trust relations between tenants in heterogeneous circle are considered multi-
lateral, unidirectional, and non-transitive. In the following we identify how trust relations authorize

cross-tenant assignments in Peer-to-Peer and Circle-of-Trust federation models.
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3.4 Tenant-Trust Framework

In this section, we review tenant-trust. We define tenant-trust in Peer-to-Peer and Circle-of-Trust
federation models. In Peer-to-Peer trust we enable user-role assignments and attribute assignments
across tenants with four trust types respectively. In Circle-of-Trust we define two trust types en-
abling user-role assignments in homogeneous and heterogeneous circles.

We distinguish tenant-trust in Peer-to-Peer with role-based and attribute-based federation. In
Peer-to-Peer role-based federation model, various trust types have been elaborated. Recently
in [59] set of three cross-tenant trust models type «, (3, and ~ has been defined. We extend these
definitions to multi-cloud environment in addition to introducing a new trust type called 0. We use
“<” to show tenant-trust between two tenants in Peer-to-Peer federation where 7'y < T’ signifies
that tenant A trusts tenant B. In a Peer-to-Peer federation, trustor can take permission to make
user-role assignments or it can give permission to trustee to make user-role assignments. If trustor
gives permission to trustee to make user-role assignments, three scenarios arises. First, trustor
authorizes trustee to assign its users to roles in trustee. Second trustor authorizes trustee to assign
trustee’s users to its roles. Third trustor grants permission to trustee to make user-role assignments
in its tenant. Our tenant-trust enables user-role assignment in multi-tenant multi-cloud IaaS. To that
end, a prior trust in cloud administrative domain is required. We elaborate tenant-trust in multi-
cloud environment with a cloud-trust existing between corresponding tenants prior to establishing
tenant-trust. Moreover, trust relations are defined as unilateral, unidirectional, and non-transitive,
and in our tenant-trust, trustor tenant can establish and end trust relationship.

Type-a, perhaps the most intuitive form, elaborates trustor to take permission to share resources
with a trusted tenant where it assigns trustee users to its roles, illustrated in Figure 3.9a. Currently
in OpenStack cloud platform this type of trust exist between tenants where a domain (OpenStack
tenant) can assign users from other domains to its project-role-pairs (in OpenStack projects are
associated with roles as project-role-pairs). In multi-cloud situation, type-a tenant-trust can be

utilized as a trust relationship between identity provider and service provider. If service provider
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Figure 3.9: User-Role Assignment in Peer-to-Peer Tenant-Trust.

trusts identity provider, then identify provider can federate its users to access service provider’s
resources. Type-a tenant-trust is defined in Table 3.1.

In type-/3, trustor gives permission to trustee to assign trustor’s users to trustee’s roles. It is
shown in Figure 3.9b. Trustor tenant trusts trustee tenant by exposing trustee’s user set for cross-
tenant user assignments. Type-/3 allows resource owner to determine access to its resources. For
instance, a bank trusts another bank, in this type of trust trustees are not obliged to expose any
resources to trusters as well as delegating other tenants permission to make user-role assignments.
It is defined in Table 3.1.

Type-vy grants permission to trustee tenant to assign its users to roles in trustor tenant. It is
illustrated in Figure 3.9c. In type-v, trustor’s role structure is not sensitive for trusted tenants’
user assignments, meaning if a tenant trust another tenant, it trust the trustee tenant with exposing
its resources. For example, an insurance company trusting an institute with type-y grants insti-

tute’s tenant to assign students and employees to promotions in its company. Type-v is defined in
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Table 3.1: User-Role Assignment in Peer-to-Peer Tenant-Trust Types.

Tenant-Trust | Definition

Tenant-Trust Type-o:  If tenant 4 <, tenant g, then tenant A is authorized to assign tenant
B’s users to it’s roles. Tenant A controls user-role assignments.

Tenant-Trust Type-(3: If tenant 4 <p tenantp, then tenant B is authorized to assign tenant
A’s users to its roles. Tenant B controls user-role assignments.

Tenant-Trust Type-~y:  If tenant 4 <., tenantpg, then tenant B is authorized to assign its
users to tenant A’s roles. Tenant B controls user-role assignments.

Tenant-Trust Type-o:  If tenant 4 <5 tenant g, then tenant B is authorized to assign users
to roles in tenant A. Tenant B controls user-role assignments.

Table 3.1.

Another type of trust is type-d where trustor grants permission to make user-role assignments
in its tenant. Type-o trust is defined in Table 3.1 and depicted in Figure 3.9d. This type if trust
delegates administrative privileges to trussed tenants. For instance, two distinct tenants’ adminis-
tration can be merged virtually using type-¢ trust, specifically in interest of organizations in time
of reorganizing the overall structure of the organization.

In Peer-to-Peer federation, we also define tenant-trust with attribute assignment where a tenant
trust another tenant to either grant or take permissions to assign attribute values to users. Tenant-
trust types with attribute assignment are defined in Table 3.2. Trust relationships defined in Peer-
to-Peer attribute-based model are unilateral, unidirectional, and none-transitive trust relationships.
We use “<” to show trust between two tenants. In Peer-to-Peer attribute-based model trust relation-
ship is required to be reflexive but is not required to be symmetric or antisymmetric. Multi-tenant
attribute-based access control model (MT-ABAC) employs Peer-to-Peer tenant-trust which we ex-
plain in detail in Chapter 5 to enable tenant domain cloud federation. In MT-ABAC each user
is associated with a set of attributes called user attributes, consumed in evaluating users to grant
access to resources in the tenant. By enabling attribute assignment across tenants resources are

shared in cloud IaaS.
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Table 3.2: User-Attribute Assignment in Peer-to-Peer Tenant-Trust Types.

Tenant-Trust | Definition

Tenant-Trust Type-o:  If T’y <, I's, Tenant 'T'y is authorized to assign values for T'y’s user
attributes to Tenant T's’s users. Tenant T’y controls cross-tenant
attribute assignments.

Tenant-Trust Type-3: If Ty <3 1, Tenant Tz is authorized to assign values for 1z’s user
attributes to Tenant T'y’s users.'I'g controls cross-tenant attribute
assignments.

Tenant-Trust Type-~:  If Ty <., T, Tenant T'g is authorized to assign values for T'y’s user
attributes to Tenant T's’s users. Tenant T’y controls cross-tenant
attribute assignments.

Tenant-Trust Type-o: If T'yx <5 Tg, Tenant Ty is authorized to assign values for T's’s user
attributes to Tenant T's’s users. Tenant T'g attribute assignments in
tenant T'4.

We define a set of four attribute assignments tenant-trust relationships, «, (3, 7, and 6. In
type-q, trustor tenant is authorized to assign attribute values to users in trustee tenant depicted in
Figure 3.10a. Type-/3 tenant-trust grants permission to trustees to assign attribute values to trustee
tenants illustrated in Figure 3.10b. In type-v, trustee is granted permissions to make attribute
assignment to its users from trustor tenant attribute values shown in Figure 3.10c. Finally type-0
grants attribute assignment ins trustor tenant to trustee. Type-d conceptual attribute assignment is
demonstrated in Figure 3.10d.

In a Circle-of-Trust, tenants establish trust with all tenants in the circle by joining the cir-
cle. We distinguish two types of circles, homogeneous and heterogeneous based on uniform and
non-uniform tenant types respectively. In homogeneous circles, tenant-trust is multilateral, bidi-
rectional, and transitive relationship and in heterogeneous circles, tenants trust each other with
a multilateral, bidirectional, and non-transitive relationship. Moreover, trustor and trustee is no
longer valid in Circle-of-Trust federation model since all tenants trust each other, trustor and trustee

terms are not meaningful. we distinguish tenants by user-owner tenant and resource-owner tenants.
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Figure 3.10: Attribute Assignment in Peer-to-Peer Tenant-Trust.

Also, we define tenant-trust across a circle to mean the same tenant-trust applies to all tenants’ re-
lationships in the circle. User-role assignments in Circle-of-Trust is defined as user to public role
assignments which is described in Chapter 6 in detail.

We define two types of trust in Table 3.3, type-e where user-owner tenants can assign their
users to public roles in the trusted tenants illustrated in Figure 3.11a and type-( where resource-
owner tenants can assign users in the circle to their public roles demonstrated in Figure 3.11b. We
use “<I” to represent tenant-trust relationship between two tenants which are members of the same
circle.

Type-€¢ enable tenants in the circle to assign their users to roles of other tenants in the circle.
The advantage of this type of tenant-trust is its simplicity to administer and implement as long
as tenants’ resources shared are not sensitive within the circle and tenants are willing to delegate
user-role assignments to trusted tenants in the circle. For instance, an academic Circle-of-Trust

is a motivation of this type of circles where academic tenants establish a Circle-of-Trust to share
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Table 3.3: User-Role Assignment in Circle-of-Trust Tenant-Trust Types.

Tenant-Trust | Definition

Tenant-Trust Type-c:  If T'y <. T, Tenant T'y is authorized to assign its users toI'g’s
roles. Tenant Ty controls user assignments.

Tenant-Trust Type-C:  If T's <¢ T, Tenant T' is authorized to assign T's’s users its roles.
Tenant 'I's controls user assignments.

T ST
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(a) Tenant-Trust Type-e. (b) Tenant-Trust Type-C.

Figure 3.11: User-Role Assignment in Circle-of-Trust Tenant-Trust.

computing resources. Any academic tenant can assign its users to resources across tenants in the
circle.

Type-( on the other hand, follows a different purpose to protect shared resources where user-
role assignments are administered by resource-owner tenants. Tenants do not want to delegate
trusted tenants permission to make assertions to their shared resource. A Circle-of-Trust of finan-
cial companies is a motivating example of type-( tenant-trust. Financial companies do not want
to expose their resources to collaborating tenants in the circle since their resource are highly sen-
sitive even within trusted tenants in the circle. We further explain Circle-of-Trust tenant-trust in

homogeneous and heterogeneous circles in Chapter 6.
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3.5 Scope of this Dissertation

Our contributions in this dissertation scopes to authorization federation in homogeneous multi-
tenant multi-cloud IaaS platforms with Peer-to-Peer and Circle-of-Trust federation models. Fig-
ure 3.12 illustrates our scope of contribution. We distinguish federation in cloud with service,
platform, trust, and identity properties.
Service (Iaas vs PaaS vs SaaS). Cloud platforms offer services at IaaS, PaaS, and SaaS, where
services in laaS layer are homogeneous. In SaaS and PaaS federation spans a range of heteroge-
neous services. We focus on IaaS cloud service layer where services are homogeneous.
Platform (Heterogeneous vs Homogeneous). Deployment models in federation include homo-
geneous and heterogeneous cloud platforms.We consider homogeneous cloud platforms in cloud
TaaS federation. To that end, models discussed in this dissertation in multi-tenant cloud IaaS can
be easily extended to multi-tenant multi-cloud laaS as we scope to homogeneous cloud platforms.
Trust (Circle-of-Trust vs Peer-to-Peer). In a cloud federation two fundamental federation trust
models are identified as Circle-of-Trust and Peer-to-Peer where we elaborated these federation
models with tenant-trust. In this dissertation, trust is defined between tenants as tenant-trust
in the context of Peer-to-Peer and circle-of-Trust federation models. In our scope, we identify
that Peer-to-Peer model trust is established between tenant pairs while in Circle-of-Trust relation-
ships are established between a group of tenants. In a Peer-to-Peer trust we scope to role-based
and attribute-based access control models and in Circle-of-Trust we consider role-based and role-
centric attribute-based models with cross-tenant assignments.
Identity (Authentication vs Authorization). Identity federation deals with authenticating and
authorizing federated user beyond their home tenant. In IaaS cloud context authentication pro-
cess identifies users identity and authorization considers set of permissions granted with users’
credentials. In this dissertation, we focus on authorization federation in cloud IaaS.

In our scope, we consider multi-cloud federation as distinct tenants collaborating in multi-

cloud and cloud platforms. Moreover, in tenant administrative domains (cloud and tenant domain
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Figure 3.12: Scope of Contribution with Cloud Federation Characteristics.

in section 3.2), we enable collaboration with defined tenant-trusts. In this dissertation, trust is
defined as tenant-trust between tenant pairs in Peer-to-Peer and across a group of tenants in Circle-
of-Trust.

Our contributions are categorized into Peer-to-Peer and Circle-of-Trust federation models in
the following Chapters. In Figure 3.13, we depict a taxonomy of our contributions. Multi-cloud
multi-tenant role-based access control model (MC MT-RBAC) enables Peer-to-Peer federation in
homogeneous multi-cloud environments using user-role assignments. This model is implemented
in OpenStack, an open-source and well accepted cloud platform. Administration operations and
implementation considerations are described in Chapter 4 with tenant-trust. In MC MT-RBAC, we
realized MT-RBAC [59] in OpenStack with tenant-trust types «, (3, 7y, and 6 where by establishing
trust with a tenant from a trusted cloud, user-role assignments across cloud platforms are enabled.

Further, we consider attribute-based model to enable Peer-to-Peer federation in multi-tenant

cloud TaaS in Chapter 5. Multi-tenant attribute-based access control model enables Peer-to-Peer
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federation with attribute assignment tenant-trust. It defines four attribute-based tenant-trust rela-
tionships, a, 3, v, and ¢ where federation is enabled by assigning attributes to trusted tenant users.
Type-a enables trustor to assign its user attributes to trustee tenants’ users. In type-f3, trustee is
authorized to assign its user attributes to trusters’ users and type--y enabled trustee to assign trustor
user attributes’ to its users. Type-d delegates attribute assignment to trustee in trustor’s tenant. MT-
ABAC is formalized and further, it is demonstrated that MT-ABAC can be configured to enforce
MT-RBAC thus subsuming it as a special case.

Circle-of-Trust federation is discussed in Chapter 6. In Chapter 6, we identify two types of
circles, homogeneous circle with unform tenant types and heterogeneous circle with non-uniform
tenant types. A multi-tenant role-based access control model in circle (MT-RBAC,) is demon-
strated enabling collaboration between tenants in the circle with tenant-trust. In Circle-of-Trust we
enable federation by user-role assignments across tenants in the circle. Two tenant-trust types are
defined, € and (. In type-¢ user-owner tenants can assign their users to public roles in the circle.
In order to protect tenants’ resources, we define two types of roles, private and public roles with

limited role hierarchy (see section 6.2.1). Cross-tenant user-role assignments in the circle are only
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allowed as user to public role assignments. In type-( resource owners allowed to assign users in
the circle to their public roles. Moreover, we define multi-tenant role-centric attribute-based ac-
cess control model in circle (MT-RABAC,) to enable federation in heterogeneous circles. Using
attributes, we differentiate tenants based on their type, limiting user-role assignments in the circle

by tenant attributes.
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Chapter 4: PEER-TO-PEER MULTI-CLOUD MT-RBAC MODEL AND

OPENSTACK IMPLEMENTATION

In this chapter, we propose a Multi-cloud multi-tenant role-based access control (Multi-cloud MT-
RBAC) model providing Peer-to-Peer federation in multi-cloud IaaS. Multi-cloud MT-RBAC de-
fines tenant-trust between tenants in distinct OpenStack cloud platforms. It provides federated user-
assignments with defined trust between OpenStack tenants. Moreover, multi-cloud MT-RBAC
administration model and implementation considerations in OpenStack identity service is demon-

strated in this chapter.

4.1 Multi-Cloud Motivation

Cloud federation is a promising mechanism to share resources across multiple public or private
clouds in order to fulfill demanding IT portfolio of enterprises. Cloud provider lock-in is one main
drawback of cloud adoption which can be avoided by federated cloud model. Federation allows use
of multiple cloud providers to share data and services while data and applications reside in distinct
clouds with different security or privacy measures. Federate cloud model offers greater resource
pooling, flexibility and dynamicity for organizations. In this scenario, multiple collaborating orga-
nizations aim to share resources located across multiple cloud service providers. OpenStack [48]
and Amazon Web Services (AWS) [1] as leading cloud platforms currently support federation;
however, federation model supported is limited to cloud federation where tenant administrators
cannot establish trust with tenants in trusted clouds and administer cross-tenant access .

In this chapter, we present a fine-grained mechanism to establish trust between domains across
clouds and enable domain administrators to manage trust and user-role assignments. We use do-
main and tenant interchangeably since domain is representing tenant in scope of OpenStack and
our Peer-to-Peer federation model is implemented in OpenStack. Our contribution is scoped within
federation in homogeneous cloud IaaS platforms.

To motivate the problem, we use an enterprise such as Acme in figure 4.1 which stores it’s
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Figure 4.1: Cross-Cloud Domain Federation.

financial data in Acme’s private cloud and development applications in Acme’s public cloud. Fi-
nance domain hosts finance projects in private cloud while Testing domain in public cloud hosts
software developer users. Alice as a software developer is working on reports which finance data
access is necessary. For security and privacy reasons financial data should not be transferred to
other domains. Meanwhile, for administrative reasons it is impractical to provision or assign other
domains’ users permanently in Finance domain. The practical approach is for Testing domain ad-
ministrator to establish a relation between two domains in which Finance domain administrator
is authorized to assign Alice to Finance report projects. Upon task completion Finance domain
administrator can remove user assignments. Testing domain administrators can remove federated

relation with Finance domain at any time.

4.2 Role-Based Peer-to-Peer Domain-Trust

This section introduces domain-trust in the concept of Peer-to-Peer federation model in Multi-
cloud IaaS. In multi-cloud IaaS, we scope to homogeneous cloud platforms (OpenStack). We de-
fined two type of multi-cloud administration domains in section 3.2, domain-trust provides federa-
tion in tenant administrative domain. Trust determines how clouds interact with each other, includ-
ing which and how much information they share in a trust relationship. We identified domain-trust
(tenant-trust) with initiation, direction, and transitivity properties in Peer-to-Peer federation model
described in section 3.3. We elaborate domain-trust as unilateral, unidirectional, and non-transitive
relationships illustrated in Figure 4.2. We introduced four potential types of trust relations to estab-
lish and control cross-domain access in Peer-to-Peer federation model in section 3.4, domain-trust

types a, 3, . and 4.
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Figure 4.2: A Tree Structure Characterizes Trust.

Introduced domain-trust, provides user-role assignments in Peer-to-Peer federation model where
a pair of domains across two distinct cloud platforms establish trust. In the context of domain-trust,
each trust type allows different trust relation and cross-domain assignment management. In the fol-
lowing, we use domain A and B in distinct clouds where each has a set of users and resources and
cross-domain assignments are users — resources. We use “<” as a trust relation notion where
A < B, states that A trusts B. domain A is trustor and B is trustee domain.

Type-a. Trustor grants inter-cloud access to trustee. It is the most intuitive trust where by
trusting a cloud, a trustor cloud domain shares certain resources with trusted cloud domain. If
A 4, B, domain A is authorized to assign B’s users to domain A’s resources. In such trust
type, domain A administrator role controls trust relation existence and cross-domain assignments.
Type-a trust is useful when domain A is a resource provider and domain B is an identity provider
(Userg — Resourcey).

Type-S. Trustee grants inter-cloud access to trustor. If A <z B, domain B is authorized to
assign domain A’s users to its resources. In such trust type, domain A administrator controls trust
relation and domain B administrator controls cross-domain assignments. Domain A must trust
domain B with exposing its user set in order to gain cross-domain access. In addition domain A
must trust domain B judgment on cross-domain assignments (User, — Resourcep).

Type-v. Trustee takes inter-cloud access to trustor. If A <., B, domain B is authorized to
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assign its users to domain A’s resources. In such trust type, domain A administrator controls trust
relation and domain B administrator controls cross-domain assignments. Domain A exposes its
selected resources to share with trusted domain B where it trusts domain B judgment on cross-
domain assignments (U serp — Resource,).

Type-d. Trustee controls intra-cloud access within trustor. If A<l; B, domain B is authorized to
assign domain A’s users to resources in domain A. In such trust type, domain A administrator con-
trols trust relation and domain B administrator controls intra-cloud assignments within domain A.
Domain A exposes part or entire set of users and resources to domain B (User, — Resource,).
Type-6 domain-trust enables domains to delegate domain adminstration, useful in organizations

with multiple domains across cloud platforms.

4.2.1 Cross Domain Trust with OpenStack

In our multi-cloud domain-trust, we enable user assignment to shared projects between two clouds
upon the trust relation among trusted domains. In each domain a set of resources are shared, more
specifically projects. Our model is suited for OpenStack cloud platform, thus we use project-role-
pairs (PRP) to represent resources in domains. Roles are cloud global and assigned to users as
PRPs. In multi-cloud MT-RBAC, users are assigned to cross-domain PRPs by domain-trust types
defined earlier.

Defined domain-trust types «, 3,7, and § are used to authorize cross-domain assignments
within homogeneous multi-cloud Peer-to-Peer federation. Type-« is illustrated in Figure 4.3a en-
abling user assignments between an identity provider’s users and cloud’s PRPs. It allows a domain
such as domain 4 to share its PRPs by trusting an IdP such as IdPg (domain 4 <,1dPg). domain 4
is authorized to establish trust relation and control domainp’s user assignments to its PRPs.

Type-f3 is practical for sharing resources with the purpose of protecting resources’ privacy.
In Figure 4.3b, domain, < domainp denotes that domain 4 agrees to share its user set with
domaing. In such a trust relation domain g enforce cross-domain user assignments.

Type-7 is useful to share projects within a collaboration group of clouds by extending Peer-to-
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(c) A trusts B in Type-y (d) A trusts B in Type-9

Figure 4.3: Cross-Domain Trust User Assignments

Peer federation into multiple domain-trust type-+y relationships between a group of domains across
clouds. Figure 4.3c depicts that trustee domainp enforces user assignments to domain 4’s PRPs.

Type-9d in Figure 4.3d enables trusted cloud (domaing) to administer intra-cloud assignments
in trustor domain 4. Such trust type is useful to achieve administration federation in a multi-cloud
environment.

Using defined domain-trust relationships, we can virtually merge administration of a pair of
domains across distinct cloud platforms. We define two types of administration merge across Peer-
to-Peer federated domains. Standard merge where Both domain administrators can assign users to
federated resources and full merge where both domain administrators have similar authorizations
across inter-domain and intra-domain assignments over federated domains. We define standard

merge as follows.

Definition 1. If domain s trusts domaing in type 5 and v and domaing trusts domain 4 in type

[ and ~y then,

e domain 4 users can be assigned to domaing project-role-pairs, both by domain o adminis-

trator and domaing administrator.
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e domaing users can be assigned to domain s project role pairs both by domain 4 adminis-

trator and domain g administrator.

Also, simply we can fully merge two domains across distinct clouds using domain-trust types 3, v,

and 9. We define full merge as follows

Definition 2. If domain s trusts domaing in type B, v, and 6 and domaing trusts domain 4 in

type B3, v, and ¢ then,

e domain 4 users can be assigned to domaing project-role-pairs, both by domain o adminis-
trator and domain g administrator and domain o administrator can modify user assignments

in domaing.

e domaing users can be assigned to domain 4 project role pairs both by domain 4 administra-
tor and domaing administrator and domaing administrator can modify user assignments

in domain 4.
4.2.2 Multi-cloud MT-RBAC Administrative Model

In this section, we formalize the multi-cloud Peer-to-Peer domain-trust model introduced in sec-
tion 4.2.1. Semantics to establish and disband domain-trust relationships of type «, /3, 7, and § are
discussed in addition to assignment and unassignment operations for each trust type. Establishing
domain-trust is similar between different domain-trust types, thus we describe it once. In the fol-
lowing tables U is the set of users, D is the set domains in the cloud, R is the set of roles, and P is
the set of projects.

Establish, An administrator (cloud or domain) user establish trust to another domain in trusted
cloud. Fstablish(uy,d;) establishes domain-trust between u; current domain and d; domain with
corresponding type «, 3, v, and . Authorization for E'stablish requires that trustor user have ad-
min role in its domain and a prior coarse-grained trust exists between the domains’ clouds. Trusted

clouds represented by C'T" a set of trusted clouds by user u; cloud. If the user has admin role and
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the trustor domain belongs to trusted clouds then, domain-trust D7’ is updated with corresponding
trust relationship.

Table 4.1 defines domain-trust type-« administrative operations. In Assignment (uy, ua, p1,71),
an admin user u; assigns a user us to a project p; with a role 1. Authorization requirements are
u1, p1 and r; must belong to the same trustor domain for operation to succeed. Subsequently, U A
in trustee’s domain is updated with (us, py, r1) assignment. User assignment set is represented as
UA. In Unassignmentq(u, ug, p1, 71 ), similar authorization requirements to Assignment,, ap-
plies. Thus, (ug, p1,71) is removed from trustee’s U A set. In type-a, Disbandy(ui,d;) removes
domain-trust relation, initially all user-assignments (project_owner(p), user_owner(u)) which is
(trustor_doma in, trustee_domain) should be removed from trustee’s U A set, then domain-trust
relationship is deleted.

Domain-trust administrative operations type-/3 is elaborated in Table 4.2. In Assignmentg,
A domain admin user u; is allowed to assign trustor domain’s user us to its PRP (py,r;). Sub-
sequently, user assignment set U A in trustor domain is updated to reflect that trustor user us is
assigned to trustee PRP (py1,r1). In Unassignmentg, similar to Assignmentg u; must belong
to trustor domain and (p1,71) owns by trustee domain. Afterwards U A is updated by removing
(ug, p1,71) from UA. Disbandg defines the semantics for removing type-/3 trust. To that end, first
we remove all assignments from trustee domain admin w; in trustor’s domain U A set, then we
remove trust relation (user_owner(uy) ,d;) between two domain from domain trust set DT'.

Type-vy administrative operations are depicted in Table 4.3. In Assignment~(uy, uz, p1,71), an
admin user u; from trustee is authorized to assign it’s user uy to trustor’s (p;, 7). Authorization
requirements mandate u; and us owns by same trustee domain in the domain-trust relationship.
Afterwards U A in trustee’s domain is updated with (uq, p1,71) assignment. Unassignment., op-
eration is similar to assignment, however assignment by user admin u; should be removed from
user assignment set U A in trustee’s domain. To disband type-v trust relation, it is mandatory to
remove all user assignments (project_owner(p), user_owner (u)) from trustee’s U A set before

removing trust.
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Table 4.1: Domain-Trust Type-a Administrative Model

Operations

Authorization (—)

Updates

Yu, € U,Vd, € D,
Establisha (ul, dl)

Vul,u2 € U,Vpl € P, Vry € R,
Assignment,_ (u1, us, p1,71)

Vul,u2 € U,Vpl € P, Vry € R,
Unassignment  (u1, ug, p1,71)

Yu, € U,Vd, € D,
Disbanda (’LLl, dl)

(domain_admin(u,) V
cloud_admin(uy)) A
(user_cloud(uy ),
domain_owner(d,)) € CT

(domain_admin(uy) V
cloud_admin(uy)) A
(user_owner(uy) =
project_owner(py)) A
(user_owner(uy),
user_owner(ug)) € DT,

(domain_admin(uy) V
cloud_admin(uy)) A
(user_owner(uy) =
project_owner(py)) A
(user_owner(uy),
user_owner(ug)) € DT,

(domain_admin(u,) V
cloud_admin(uy)) A
(user_owner(uy),dy) €
DT,

DT, = DT, U
(user_owner(uy), dy)

UA, = UAy U (uz,p1,71)

!

UA, = UAa - (u2aplarl>

[0}

UA, =UAy — {(u,p,7) |
ueU,pe P,reR,
(project_owner(p),
user_owner(u)) € DT, },
DT, = DT, —
(user_owner(uy),dy)
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Table 4.2: Domain-Trust Type-8 Administrative Model

Operations

Authorization (—)

Updates

Yu, € U,Vd, € D,
Establishg (ul, dl)

Vul,u2 € U,Vpl € P, Vry € R,
Assignment g (uy, ug, p1,71)

Vul,u2 € U,Vpl € P, Vry € R,
Unassignment (u;, uz, p1,71)

Yu, € U,Vd, € D,
Disbandﬁ (ul, dl)

(domain_admin(u,) V
cloud_admin(uy)) A
(user_cloud(uy ),
domain_owner(d,)) € CT

(domain_admin(uy) V
cloud_admin(uy)) A
(user_owner(uy) =
project_owner(py)) A
(user_owner(us),
user_owner(uy)) € DTp

(domain_admin(uy) V
cloud_admin(uy)) A
(user_owner(uy) =
project_owner(py)) A
(user_owner(uy),
user_owner(uy)) € DTp

(domain_admin(u,) V
cloud_admin(uy)) A
(user_owner(uy),dy) €
DT}

DT} = DT U
(user_owner(uy), dy)

UAIB = UAg U (u2,p1,71)

UA,ﬁ = UAp — (uz,p1,m1)

UAlﬁ =UAs — {(u,p,7) |
ueU,pe P,reR,
(user_owner(u),
project_owner(p)) €
DT}, DT, = DT —
(user_owner(uy),dy)
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Table 4.3: Domain-Trust Type-y Administrative Model

Operations

Authorization (—)

Updates

Yu, € U,Vd, € D,
Establish7 (ul, dl)

Vul,u2 € U,Vpl € P, Vry € R,
Assignment, (u;, uz, p1,71)

Vul,u2 € U,Vpl € P, Vry € R,
Unassignment, (uy, uy, p1,71)

Yu, € U,Vd, € D,
Disband., (Ul, dl)

(domain_admin(u,) V
cloud_admin(uy)) A
(user_cloud(uy ),
domain_owner(d,)) € CT

(domain_admin(uy) V
cloud_admin(uy)) A
(user_owner(uy) =
user_owner(usg)) A
(project_owner(p;),
user_owner(u,)) € DT,

(domain_admin(uy) V
cloud_admin(uy)) A
(user_owner(uy) =
user_owner(usg)) A
(project_owner(py),
user_owner(u,)) € DT,

(domain_admin(u,) V
cloud_admin(uy)) A

(user_owner(uy),dy) €
DT

Y

DT, = DT, U
(user_owner(uy), dy)

UA; = UA, U (uz,p1,71)

UA; =UA, - (u2,p1,71)

UA/7 =UA, — {(u,p.7) |
ueU,pe P,reR,
(project_owner(p),
user_owner(u)) € DT},
DT, = DT, —
(user_owner(uy),dy)
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Table 4.4: Domain-Trust Type-0 Administrative Model

Operations Authorization (—) Updates
Yuy € U,Vd, € D, (domain_admin(uy) V DT; = DT5 U
Establish;(uy, d;) cloud_admin(uy)) A (user_owner(uy), dy)

(user_cloud(uy ),
domain_owner(d,)) € CT

Yuy,us € U, Vpy € P,Vr, € R, (domain_admin(u,) V UAZ; =UAs U (ug,p1,71)
Assignment(uy, ug, p1,71) cloud_admin(uy)) A
(user_owner(ug) =

project_owner(p1)) A
(user_owner(uy),
user_owner(ug)) € DTy

Yuy,us € U, Vp, € P,Vr, € R, (domain_admin(u,) V UAZ; =UAs — (uz,p1,7m1)
Unassignment(uy, ug, p1,71) cloud_admin(uy)) A
(user_owner(ug) =

project_owner(py)) A
(user_owner(uy),
user_owner(ug)) € DTy

Yu, € U,Vd, € D, (domain_admin(uy) V UAs; =UA; — {(u,p,7) |
Disband;(uy, d;) cloud_admin(uy)) A u,up € U,p € P,r € R,
(user_owner(uy),d;) € (user_owner(uy),
DT user_owner(u)) € DTy},
DTs = DT —

(user_owner(uy), dy)

Type-0 administrative model is shown in table 4.4. Assignments depicts an intra-domain user
assignment by trustee cloud or domain admin user u;, assigning trustor user us to trustor PRP
(p1,71). For Assignments and Unassignments, it is required that us and p; domains are same
trustor domain. In Disbandg, first we remove all intra-domain assignments in trustor domain ,

then we remove trust relation from DTj.
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4.3 Implementation

This section reviews multi-cloud MT-RBAC implementation in OpenStack Cloud platform with
relevant background on Current federation APIs in OpenStack. We implemented MT-RBAC in
OpenStack cloud and multi-cloud MT-RBAC in federated OpenStack cloud platforms providing
fine-grained cross-cloud user-assignments based on domain-trust defined in section 4.2.1 with ad-

ministrative model elaborated in section 4.2.2.
4.3.1 OpenStack Background

OpenStack is an open-source cloud IaaS platform consisting of RESTful API services such as
Nova (Compute), Keystone (identity), Neutron (networking), and so on. Keystone authenticates
and authorize users to access service in OpenStack. OpenStack access control model consists of
entities such as users, groups, projects, domains, and roles. Users are individuals authenticated to
Keystone while each group is a set of users. Projects define a container of cloud resources such
as virtual machines, storage, and etc. Domain is an administrative boundary which owns users,
groups, and projects. Each cloud consist of multiple domains representing an organization (in
public clouds), a department of an organization, or an individual who uses cloud services. Roles
are global within a cloud boundary. Users and groups are both assigned to roles within project or
domain scope. Currently Keystone supports cloud admin and domain admin roles whereas domain
admin can only administer within it’s home domain. Domain administrators can assign users from
other domains to project-role-pairs in their domain.

As of Kilo release OpenStack federation API supports SAML assertions [30] (Keystone gen-
erates and consumes assertions). Specifically Keystone to Keystone federation is supported which
it allows authenticated users (Keystone as identity provider) to swap their token for a SAML as-
sertion. This assertion is redirected to another Keystone (Keystone as service provider) to get a
token back from the second Keystone. Federated user is then mapped to a user or a group from

second Keystone and based on assigned roles, it can request a project scoped token. Afterwards the
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federated user can use the token to accesses services in the federated OpenStack since the token is
valid (usually two hours is the default value).

Currently in Keystone, only cloud administrator can establish trust between two clouds by
adding trusted cloud as identity provider or service provider. Identity provider clouds are cloud
providers Keystone accepts their assertions and service provider clouds are service providers in
which users can access through federation APIs. Currently, domain-trust is not supported in Key-
stone between domains in a cloud or across multiple clouds. In our implementation, we elaborate

domain-trust in OpenStack in addition to cloud trust between clouds.

4.3.2 Multi-Cloud OpenStack Model

In multi-cloud Peer-to-Peer federation model, cross-domain access is granted based on domain-
trust between two domains across distinct clouds. In addition to OSAC model [60], federation
relation is represented by trustor clouds (identity provider) and trustee clouds (service provider)
which is a many-to-one relation. Identity providers are set of clouds which trust to federate their
users to the current cloud. Similarly service providers are set of clouds in which current cloud trust
to federate its users to their resources. For example in figure 4.1 for Acme Private Cloud, Public
Cloud is an identity provider and in Acme Public Cloud, Private Cloud is a service provider. In
Multi-cloud OpenStack Access control model (MC-OSAC), administrative model consists of two
levels of administrative roles: cloud-admin and domain admin. Cloud-admin refers to cloud-level
administrators managing all cloud identity service components. Domain-admin is administrator
role at domain-level which manages components within its associated domain. We define domain-
trust in MC-OSAC as a many-to-many relation between domains in federated clouds. In MC-
OSAC we enable domain-trust by remote assignment which is administered by domain-admin.
Mapping rules define a set of accepted remote users or groups to local domain users and groups.
Federated users are mapped to local users and groups by remote mapping in a many-to-one relation

as it is depicted in figure 4.4.

't is slightly different from OSAC model where Tokens, PRMS, and Services are omitted due to our scope of
contribution.
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Figure 4.4: Multi Cloud OpenStack Access Control Model (MC-OSAC) with Domain-Trust.!

4.3.3 OpenStack Implementation

In this section, implementation considerations are discussed. Keystone as authentication and au-
thorization service is organized as a group of internal services exposed on one or many endpoints.
Such internal services are identity, assignment, resource, token, policy, catalog, and federation. In
order to deploy our model in OpenStack platform, we modified assignment, policy, and federation
internal services in Keystone. We assumed each OpenStack cloud belongs to a single organi-
zation while domains represent departments of each organization. In the case of collaboration,
multiple domains from distinct OpenStack clouds share resources within specified domain-trust in
section 4.3.2.

We implemented the model with two OpenStack DevStack instances. Domain-trust is stored
in a MySQL as a federation-domain-trust table illustrated in Figure 4.5 showing a domain-trust
relation. Trust relation is stored as remote-domain name, local-domain id, and trust-type.

In domain-trust type «, 7, and d federation-domain-trust table is located in identity-provider
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+ + + +
| remote_domain | local_domain | trust_type |
+ + + +
| Default | default | beta

|
| domain1 | default | beta |
+ + + +

Figure 4.5: Federation Domain-Trust Table.

(trustor domain cloud) and in domain-trust type- /3, we store the federation-domain-trust table in the
service provider (trustee domain cloud). We denote the trustor domain cloud as identity provider
and trustee domain cloud as service provider. In domain-trust type « and [ the domain-admin
that issues cross-domain assignments and federation-domain-trust table are located in the same
cloud (type-« in identity provider and type-/3 in service provider), thus domain-admin can modify
mapping in the federation API locally. However, with domain-trust type v and ¢ the domain-admin
that issues cross-domain assignments and federation-domain-trust table are located in different
clouds, thus domain-admin must modify mapping in the federation API remotely. We demonstrate
type-/3 trust establishment and user assignments as following. Figure 4.6 illustrates the sequence
of establishing and assigning users in a federated OpenStack with domain-trust.
1. A domain-admin in trustor cloud initiates trust relation by selecting a trusted cloud from service
provider list (note that prior to scoping a token with a project, federated users can list domains with
an unscoped token in OpenStack federation).
2. Domain-admin token is swapped with SAML assertions and redirected to service provider.
3. Domain-admin is mapped to remote-domain-admin role which is enabled to modify federated-
domain-trust table, subsequently domain-admin can create the trust relation.

In case of trust relation deletion, Keystone removes all mappings matched with remote-domain
name. The cross-domain remote assignment establishment steps are as follows.
1. A domain-admin in the service provider initiates remote assignment by selecting a trusted-
cloud’s domain from identity provider list and federated-domain-trust table.

2. Domain-admin creates remote assignment of trustor-cloud’s domain to its user or groups.
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Figure 4.6: Cross-Domain Trust Establishment and Assignment Process.

3. Federated-domain-trust table is checked for proper trust relation as well as user or group
domain, afterwards remote assignments are created. In case of removing remote assignments,
domain-admin can only remove mappings it has created.

After remote assignments is created, incoming federated users from identity provider domain
are mapped to specified roles based on users and groups it is assigning to in the mapping rules.
Within project-role pair permission in OpenStack, federated users can request project scoped token

to access authorized resources.
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Chapter 5: PEER-TO-PEER MULTI-TENANT ABAC MODEL

This chapter introduces multi-tenant attribute-based access control model (MT-ABAC) providing
Peer-to-Peer federation in cloud IaaS. Our approach allows cross-tenant attribute assignment to
provide access to shared resources across tenants. We define tenant-trust with attribute assignment.
Particularly, our tenant-trust authorizes a tenant to assign its attributes to users from a trusted
tenant, enabling access to the trusted tenant’s resources. Also, we demonstrate that MT-ABAC can

be configured to enforce MT-RBAC as a special case.

5.1 Attribute-Based Peer-to-Peer Motivation

Multi-tenancy is a unique characteristic of cloud computing in which multiple users can utilize
shared infrastructure provided by cloud IaaS. Cloud service providers segregate the resources and
customer’s data into tenants to protect data privacy and integrity. Tenants are isolated containers
with tenant-specific virtual computing environments. Each tenant corresponds to an organization,
a department of an organization, or an individual who uses cloud services. In this scenario, each
tenant is considered as a cloud customer with resources whose integrity and privacy must be pro-
tected. The focus on tenant isolation diminishes the scope for multi-tenant federation.

At the dawn of cloud systems, the multi-tenancy concern was resource segregation, whereas
recent enterprise cloud adoption has raised the issue of multi-tenancy resource sharing. The drive
for multi-tenant federation arises from at least two distinct directions. First, a large organization
may utilize multiple tenants for security and reliability, where each tenant can represent a depart-
ment. For example, an organization’s financial department processes sensitive financial data while
its marketing department publishes open information to the public, so they need to be isolated but
yet may need controlled collaboration. Second, distinct enterprises may have collaborative tasks
across their corresponding tenants. Current cloud Infrastructure-as-a-service (IaaS) providers such
as Amazon AWS [1] or OpenStack [48] offer limited cross-tenant access [34].

Current cloud IaaS providers such as Amazon or Rackspace provide intra-tenant access control
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using variations of the well-known role-based access control (RBAC) [17,54] approach. RBAC has
been the dominant access-control paradigm for over two decades. Nevertheless, various limitations
of RBAC have been recognized over this period and increasingly there is a push to move towards
attribute-based access control [27,28, 53] in general. ABAC advantages over RBAC specifically
in cloud computing have been discussed in the literature [14]. A user’s access to a resource in
ABAC depends on the relative values of the user and resource attributes. An attribute is simply
a name:value pair. Attributes are used to represent security-relevant properties of users and re-
sources. We anticipate that CSPs will incorporate ABAC features in addition to their currently
implemented RBAC.

In this chapter we present a novel attribute-based access control model to enable Peer-to-Peer
federation between tenants in cloud systems. Our scope is limited to cross-tenant federation in

cloud IaaS.

5.2 Attribute-Based Access Control Model (ABAC))

In this section, we present our core ABAC model which we designate as ABAC,. This model
is designed to be sufficient for our purpose in developing MT-ABAC and is not intended to be a
comprehensive ABAC model. ABAC has been defined in various ways in the literature, usually
for some specific purpose. Our model is specifically motivated by the previously defined ABAC,,
model [31] and is compatible with the recently defined NIST ABAC framework [27].

Core ABAC,; model element sets and functions are illustrated in Figure 5.1, which includes
three basic components: users (U), objects (O), and actions (A). Attributes are properties asso-
ciated with users and objects which we represent by UATT and OATT respectively. Users and
objects are collectively called entities. Authorization predicates (Auth) express access rules in the
system which evaluate user attributes against object attributes and render a decision to permit or
deny access to the requested resource with respect to the specific action.

Each attribute is a function which takes users or objects as input and returns a value from the

attribute’s range (we use the terms range and scope interchangeably). For example, a user attribute
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Figure 5.1: Core ABAC, Model Structure.

function such as Role € UATT maps u; € U to a value cloud_admin. Depending upon attribute
type each attribute function will return a single value or a set of values. An atomic-valued attribute
will return one value while a set-valued attribute will return a subset of values within its defined
scope.

A user can be a human or non-person entity, such as an application, making requests to perform
actions on an object. We consider a user (v € U) to be a person for simplicity. Each user is
represented by a finite set of user attributes (U ATT") such as name, salary, clearance, role, etc.
User attribute function values are specified by security architects at system creation or modification
time.

Objects are system resources for which access should be protected such as files, applications,
virtual machines (VMs), etc. Objects are associated with attribute functions (O ATT) representing
resource properties such as risk level, location, and classification. At creation or modification time
object attributes might be constrained by the attributes of creating user in the system, for example,
anew VM object can inherit attributes such as VM owner from corresponding user attributes such
as user id. The details of such constraints are not material for our purpose in this dissertaion, hence
we do not explicitly model them. The approach of ABAC,, [31] in this regard could be adapted to
ABAC,.

64



Actions are allowed operations in the system. These operations typically include create, read,
update and delete. We use the terms actions and operations interchangeably. An action is applied
to an object by a user. The term action is more commonly used in ABAC whereas operation is
more common in the RBAC literature. An RBAC permission is defined to be an object, operation
pair, which terminology we also use in this dissertation.

Actions are evaluated by authorization policy to enable access of a user to an object. Authoriza-
tion policy is expressed as a propositional logic predicate for each action in the system, which takes
as input a user and an object. Based on the values of the user and object attributes the authorization
predicate for a given action returns true or false.

We formalize the above in the following definition, specifying sets, functions and authorization

policy language.
Definition 3. Core ABAC is defined by the basic component sets, functions and authorization
policy language given below.

e U and O represent finite sets of existing users and objects respectively.

o A represents a finite set of actions available on objects. Typically A = {create, read,

update, delete}.
o UATT and OATT represent finite sets of user and object attribute functions respectively.

e For each att in UATT U OATT, Scope(att) represents the attribute’s scope, a finite set of

atomic values.
o attType : UATT U OATT — {set,atomic}, specifies attributes as set or atomic valued.

e FEach attribute function maps elements in U and O to atomic or set values as follows.

Scope(uatt) if attType(uatt) = atomic
Yuatt € UATT .uatt : U — ( ) ype( )
Scope(uatt) £ qttType(uatt) = set

Scope(oatt) 1f attType(oatt) = atomic
Yoatt € OATT.oatt : O — (oatt) (catt)
Scope(oatt) 4 £ qttType(oatt) = set
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e For each a € A, Authorization,(u : U,o : O) is a propositional logic predicate, defined

using the following language:

= ANe|leVel|(p) || € set.p| Ve € set.p| set A set | atomic € set |

atomic V atomic
- set = setuatt(u) | setoatt(o)
— atomic ::= atomicuatt(u) | atomicoatt(o)
“nu=cl=lClg
-Viu=<|=|<
- setuatt € {uatt | uatt € UATT A attType(uatt) = set}
- setoatt € {oatt | oatt € OATT A attType(oatt) = set}
— atomicoatt € {oatt | oatt € OATT A attType(oatt) = atomic}
— atomicuatt € {uatt | uatt € UATT A attType(uatt) = atomic}
Core ABAC, is a simplified version of ABAC, [31], suitable for our purpose in this disserta-

tion. In particular it eliminates subjects as being distinct from users as is in ABAC,,, and simply

treats them to be equivalent.

5.3 Multi-Tenant ABAC, Model

In this section we build upon ABAC, to formulate a multi-tenant attribute-based access control
model enabling cross-tenant collaboration which we designate as MT-ABAC,. The model structure
is depicted in Figure 5.2, adding the tenant (7°) entity in addition to the users and objects of core
ABAC,. Tenants are isolated operation domains leased by cloud service consumers.

Each user and each object is uniquely owned by a single tenant. For this purpose the model
requires each user to have a system defined attribute userOwner which is a many-to-one atomic-
valued function from users U to tenants 7. Note that the arrowhead indicate the many side of the
function while the absence of an arrowhead represents the one side. Likewise the model requires
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Figure 5.2: Multi-Tenant ABAC, Model Structure.

each object to have a system defined attribute objOwner which similarly is a many-to-one atomic-
valued function from objects O to tenants 7.

Further, each user attribute and each object attribute is also uniquely owned by a single tenant,
depicted respectively by the many-to-one atomic-valued functions uattOwner and oattOwner in
Figure 5.2. The crucial concept is that each tenant is responsible for assigning values to attributes
that it owns. With isolated tenants, a user can have assigned values only for those attributes owned
by the user’s owning tenant. We will see that, with appropriate trust relationship between tenants,
users belonging to one tenant can be assigned values for attributes belonging to a different ten-
ant. In our model for objects, we require that an object can have assigned values only for those
attributes owned by the object’s owning tenant. It is not possible for an object to be assigned val-
ues for attributes that belong to a tenant that does not own that object, regardless of tenant trust
relationships. In summary cross-tenant attributes can be assigned to users under appropriate trust
relationships but not to objects.

We define trust as a required attribute function trustedT'enants mapping trustor tenant to
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trustee tenants which we refer to as tenant-trust. This is a many-to-many set-valued function. We
use “<J” to represent the tenant-trust relation where 7'y 97 signifies that T € trustedT enants(Ty),
i.e., Tz is trusted by T'4. In such cases we say T4 is the trustor tenant and 7'; the trustee tenant.

We have the following definition for tenant-trust.!

Definition 4. If'T'yx T, Tenant T is authorized to assign values for T'z’s user attributes to Tenant
Ts’s users. Tenant Ty controls tenant-trust existence while Tz controls cross-tenant attribute

assignments.

In general < is required to be a reflexive relation but is not required to be symmetric, anti-
symmetric or transitive.

In light of the above definitions, we need to clarify the validity of attributes for users and ob-
jects. User attribute functions now become partial functions, because valid attribute values for a
given user can only be assigned to certain user attributes. Specifically, a user u can be assigned a
value for attribute uatt only if uattOwner(uatt) = userOwner(u) V

uattOwner(uatt) € trustedTenants(userOwner(u))
Similarly object attributes are also partial functions which are defined only for object attributes
which are from the object’s owner tenant. Specifically, an object o can be assigned a value for
attribute oatt only if
oattOwner(oatt) = objOwner(o)
In other words trust enables cross-tenant assignment of user attributes but does not impact object
attributes.

Finally, each authorization predicate must verify the compatibility of user and object attribute
ownership. For this reason, any user attribute uatt or object attribute oat? used in a action’s au-
thorization predicate with respect to a particular user v and object o, must satisfy the following
condition.

uattOwner(uatt(u)) = oattOwner(oatt(o)) V

oattOwner(oatt(o)) € trustedTenants(uattOwner(uatt(u)))

"More generally different kinds of trust could be considered as discussed in Section 5.3.2.
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5.3.1 Formal MT-ABAC, Model

We summarize the above in the following definition.

Definition 5. Multi-tenant ABAC,, is defined by the following enhancement and modifications to

core ABAC,.

e U, O, and A are defined as in core ABAC,,.

T represents a finite set of existing tenants.

UATT, OATT, Scope, and attType are defined as in core ABAC,.

userOwner : (u : U) — T, required attribute function mapping user u to owner tenant t.

objOwner : (o0 : O) — T, required attribute function mapping object o to owner tenant t.

MATT = {uattOwner, oattOwner}, required meta-attribute functions.

— uattOwner : (uatt : UATT) — T, meta attribute function, mapping user attribute

uatt to attribute owner tenant t.

— oattOwner : (oatt : OATT) — T, meta attribute function, mapping object attribute

oatt to attribute owner tenant t.

e trustedTenants : (t : T) — 27, required attribute function, mapping tenant t to powerset
of trusted T, called tenant-trust, written as < where t; < s iff ty € trustedTenants(t;)
(i.e., trustor tenant tq trusts trustee tenant t). Trustee tenant to can assign its attribute values

uatty, to users uy, from trustor tenant t, where ty € trustedT enants(userOwner(u)).

e Each attribute function uatt € UAT'T is modified to be a partial function.
Scope(uatt) if attType(uatt) = atomic
VYuatt € UATT .uatt : U — ( ) ( )
Scope(uatt) i f it Type(uatt) = set

uatt(u : U) is defined only if (uattOwner(uatt) = userOwner(u)) V

(uattOwner(uatt) € trustedT enants(userOwner(u))).
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e FEach attribute function oatt € OAT'T is modified to be a partial function.

Scope(oatt) if attType(oatt) = atomic
Yoatt € OATT.oatt : O — (0at) (o)

Scope(oatt) 4 f qttType(oatt) = set
OATT (o : O) is defined only if oattOwner(oatt) = objOwner(o).

e Va € A, Authorization,(u : U,o : O) is a propositional logic predicate (using language
defined in ABACy), with the additional required condition that uattOwner(uatt(u)) = oat-
tOwner(oatt(o)) V oattOwner(oatt(o)) € trustedTenants(uattOwner(uatt(u))) which must al-

ways be included in conjunction with all other requirements.
5.3.2 Peer-to-Peer Attribute-Based Tenant-Trust

In a tenant trust relation, in general there are two issues: (i) who controls trust relation’s existence,
and (ii) who has the authority to issue cross-tenant assignments. Together these characterize the
trust type. Moreover, trust relationships we elaborated in this section are unilateral, unidirectional,
and non-transitive (see section 3.3 for more detail). In this dissertation, for simplicity, we adopted
a specific definition of trust where trustee tenant is authorized to assign its attribute values to trustor
tenant’s user attributes which is analogous to the type-3 tenant-trust of [59]. In this section, we
briefly discuss trust types analogous to the type-« and type-7 tenant-trust types.

In type-« trust, the trustor is responsible to establish the trust relationship with the trustee, as
well as assigns the trustor’s attributes to the trustee’s users. We use <, to show this trust type
where Ty <, Ty indicates that Tz € trustedTenants(T4). With this notation, type-« tenant-trust

is defined as follows.

Definition 6. If T’y 1, Ts, Tenant T'4 is authorized to assign values for T’ ’s user attributes to Ten-

ant T's’s users. Tenant T’y controls tenant-trust existence and cross-tenant attribute assignments.

In type-«v trust, valid attribute values for given users are from owner tenants and trustor tenants. A
user is assigned a value for an attribute uatt only if

uattOwner(uatt) = userOwner(u) V
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userOwner(u) € trustedTenants(uattOwner(uatt))
Each authorization predicate in type-a must satisfy following user and object attribute ownership
condition.
uattOwner(uatt(u)) = oattOwner(oatt(o))V
uattOwner(uatt(u)) € trustedT enants(oattOwner(oatt(0)))
In type-v trust, by trusting a tenant, trustor authorizes trustee to assign its attribute values to
trustee tenant user attributes.We use <, to represent type-y tenant-trust where 7'y <, T’z signifies

that T € trustedTenants(T4). We define type-y trust as follows.

Definition 7. If T’y 4, Tz, Tenant T'g is authorized to assign values for T's’s user attributes to Ten-
ant T'g’s users. Tenant T’y controls tenant-trust existence while T'g controls cross-tenant attribute

assignments.

Type- user attribute assignment and authorization predicate conditions are similar to above men-
tioned conditions in type-a. Type-v differs from type-«, in which participating tenant has cross-

tenant attribute assignment authority.

5.4 MT-ABAC, Model Covering MT-RBAC,

In this section we first give a definition of multi-tenant RBAC (MT-RBAC,) adapted from various
slightly different but related models given in [59, 60,61]. We then show how MT-RBAC, can be

configured in MT-ABAC,,.
5.4.1 Multi-Tenant RBAC, Model

MT-RBAC, model element sets and relations are illustrated in Figure 5.3, showing the six com-
ponents: tenants (77), users (U), roles (R), operations (OP.YS), objects (OBYS), and permissions
(PRMS). A user is an individual which is associated with a single tenant via UO relation. We
recognize role as a job function associated with a single tenant while a tenant has multiple roles.

Objects are tenant resources in the system (each object has a single owner tenant) which are cou-
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Figure 5.3: Multi-Tenant RBAC, Model Structure.

pled with operations. In RBAC, permissions are operation, object pairs indicating operations on
objects.

MT-RBAC, model is defined in terms of users, roles, and objects owned by tenants. These
ownership relations are many-to-one representing tenant ownership which is depicted as user-
ownership (UQ), role-ownership (RQO), and object-ownership (OO) in figure 5.3.

As core to RBAC, user assignment (U A) and permission assignment (P A) relations enable
assignment of users and permissions to roles. Tenant-trust (7"7") identifies a many-to-many trust
relation between tenants. Similar to MT-ABAC, we use < to show trust between two tenants such
Ty and T’z as T’y < Tz means trustor tenant 7'y trusts, trustee tenant 7z. With this specification,

we define tenant-trust relation as follows.
Definition 8. If'1'y < Ty, Tenant Tz is authorized to assign Tenant T'y’s users to I's’s roles.

In such trust relation, trusting a tenant enables trustee to assign trustor’s users to its set of roles.
This type of trust is intuitive in a sense that resource owners control access to their shared resources
while user domains control their users’ access by granted authority over trust relation continuation.

With existence of trust between tenants, user assignment is defined as many-to-many user rela-
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tion mapping users to roles, if and only if users and roles owned by the same tenant or user owner
tenant trusts object owner tenant. We express user assignment condition as owner_user(u) =
owner_role(r) (where owner_user returns owner tenant of user u and owner_role returns role
r owner tenant) or owner_user(u) < owner_role(r). Permission assignment is a many-to-many
relation which maps permissions to roles requiring both elements owned by the same tenant.
Each user is assigned to one or many roles within their resident tenants or trusted tenants.
The function assigned_user_roles returns the roles assigned to a user. The permissions avail-
able to a user, are permissions assigned to roles (permissions available to a role are expressed
by function assigned_permissions) that are available to a user which are given by function au-
thorized_user_permissions. Function authorized_user_permissions designates set of permissions

available to each user in the system.
5.4.2 Formal MT-RBAC, Model

We formally define MT-RBAC, as follows.

Definition 9. Multi-tenant RBAC,,.

TENANTS, USERS, ROLES, OPS, and OBS (tenants, users, roles, operations, and

objects respectively).

te TENANTS, w e USERS, r € ROLES, op € OPS, and ob € OBS.

PRMS = OPS x OBS, the set of permissions.>

UO CUSERS x TENANTS, a many-to-one user-to-tenant owner relation.

RO C ROLES x TENANTS, a many-to-one role-to-tenant owner relation.

e OO C OBS x TENANTS, a many-to-one object-to-tenant owner relation.

2This is slightly different from NIST standard model where PRM S = 2(OFPSxOBS) "and more appropriate for
our purpose.

73



owner_user : (u: USERS) — TENANTS, the mapping of user u into its owner tenant.

Formally: owner_user(u) =t where (u,t) € UO.

owner_role : (r : ROLE) — TENANTS, the mapping of role r into its owner tenant.

Formally: owner_role(r) = t where (r,t) € RO.

owner_object : (ob : OBS) — TENANTS, the mapping of object ob into its owner

tenant. Formally: owner_object(ob) = t where (ob,t) € OO.

TT C TENANTS x TENANTS, is a many-to-many reflexive relation on TENANTS
called tenant trust relation, written as < where t; < to (trustor tenant t| trusts trustee

tenant to) only if all users of t1 can be assigned to roles of t,.

trustee_tenants : (t : TENANTS) — 2TENANTS “the mapping of tenant t into a set of

trusted tenants. Formally: trustee_tenant(t) = {t' € TENANTS |t < t'}.

UA C USERS x ROLES, a many-to-many mapping user-to-role assignment relation
requiring that (u,r) € UA = owner_user(u) = owner_role(r) V owner_user(u) <

owner_role(r).

PA C PRMSxROLES, amany-to-many mapping permission-to-role assignment relation

requiring that ((op,ob),r) € PA = owner_object(ob) = owner_role(r).

assigned_roles : (op : OPS,0b : OBS) — 2ROLES the mapping of object operation
pair (op,ob) into a set of roles. Formally: assigned_roles(op,0b) = {r € ROLES |
((op,0b), 1) € PA}.

assigned_user_roles : (u: USERS) — 28OLES | the mapping of user u into a set of roles.

Formally: assigned_user_roles(u) = {r € ROLES | (u,r) € UA}.

assigned_permissions : (r : ROLES) — 2PEMS  the mapping of role r into a set of

permissions. Formally: assigned_permissions(r) = {p € PRMS | (p,r) € PA}.
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e authorized_user_permissions : (u : USER) — 2FEMS | the mapping of user u into a set
of permissions. authorized_user_permissions(u) =

U assigned_permissions(r).
reassigned_user_roles(u)

5.4.3 Configuring MT-RBAC, to MT-ABAC,

We show configuring MT-RBAC, in MT-ABAC, by adding role as an attribute function. Once
roles become attributes, the consideration that roles are collections of permissions no longer ap-
plies since they are merely attribute values. Consequently, we must define appropriate object
attributes and authorization predicates in MT-ABAC,. To represent user assigned roles in MT-
RBAC, (assigned_user_roles function), we use a set-valued attribute function user Role. How-
ever users may be assigned roles owned by distinct tenants, for this purpose we identified user
attributes as user Role; where j represents tenants.

In order to represent permission assignment, we define attribute function obj Role as a set-
valued attribute function. Attribute obj Role captures roles related to each object in RBAC (permis-
sions assigned to roles represented by assigned_roles function). In RBAC each object is owned
by a tenant and coupled with a set of operations, for this reason we designate object attributes as
obj Role; ;, where ¢ is an operation in RBAC and k is owner tenant. The scope of both userRole
and obj Role attributes are the same as defined set of role names ROLES. We represent role own-
ership (RO) in RBAC by atomic-valued meta-attributes, uattOQwner and oattOQwner respectively
mapping user and object role attributes (user Role and obj Role) to owner tenants. In the presence
of roles attributes, authorization policy evaluates user and object respective role name attributes to

be equal as well as user and object attributes ownership.
5.4.4 Formal MT-RBAC, Configured in MT-ABAC,

The summary of above is formalized as follows.
Definition 10. A given MT-RBAC), instance is configured in MT-ABAC as follows.

o U=USERS,O=0BS,A=0PS ={ay,...,a,} where n = |A|,
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andT = TENANTS = {ty,...,t;,} where m = |T|.

UATT = {userRole; | j =1,...,|T|}.

OATT = {objRole;y | i =1,...,|Al,k=1,....|T|}.

userQuwner : (u : U) — T, required attribute function, mapping user u to owner tenant t.

Formally: userOwner(u) = owner_user(u).

objOwner : (o : O) — T, required attribute function, mapping object o to owner tenant t.

Formally: objOwner(o) = owner_object(0).

userRole; : (u: U) — 2BOLES where t; € T, attribute function, mapping user u to power-
set of ROLES. Formally: userRole;j(u) = {r € ROLES |r € assigned_user_roles(u)A

owner_role(r) = t;}.

objRole;y, = (0 : O) — 2BOLES where a; € A and t), € T, attribute function, mapping
object o for operation a; to powerset of ROLES. Formally: objRole; (o) = {r € ROLES

| r € assigned_roles(a;, 0) N owner_role(r) = t;}.

MATT = {uattOwner, oattOwner}.

— wattOwner : (userRole; : UATT) — T, meta attribute function, mapping user role
attribute user Role; to attribute owner tenant t;. Formally: uattOwner(userRole;) =
t;.

— oattOwner : (objRole; : OATT) — T, meta attribute function, mapping ob-

Jject role attribute objRole; . for operation a; to attribute owner tenant t;,. Formally:

oattOwner(objRole; i) = ty.

o trustedTenants : (t : T) — 27, attribute function, mapping tenant t to powerset of trusted

T. Formally: trustedT enants(t) = trustee_tenants(t).
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e Authorization; (u : Ujo : O) = \/ [userRolex(u) N objRole;x(0) # B A (tx =

—~

userOwner(u) V ty, € trustedTenants(userOwner(u))].

7



Chapter 6: CIRCLE-OF-TRUST CLOUD MODELS

A Circle-of-Trust established trust relations between each pair of tenants in the circle. This chapter
presents a novel extension of role-centric access control models to provide collaboration in the
context of homogeneous and heterogeneous circles. In a homogeneous circle tenants can equally
assert cross-tenant user assignments to enable access to shared resources. In a heterogeneous cir-
cle with non-uniform tenants, tenant attributes are used to distinguish which user-assignments are
authorized. we defined two trust types called € and ( respectively. Our scope in this chapter is fed-
eration in homogeneous and heterogeneous multi-tenant circles in cloud IaaS. The extension of the
models proposed in this chapter to multi-cloud would be straightforward in scope of homogeneous

multi-cloud IaaS.

6.1 Circle of Trust in Cloud

A group of tenants which adhere to a set of common policies, trust relations and collaboration
interfaces create a Circle-of-Trust where collaboration interactions are defined between all mem-
bers. Scenarios such as a large enterprise with multiple tenants collaborating in a public cloud, an
organization with tenants across public and private clouds, or tenants from multiple organizations
performing collaborative tasks are motivating use cases for circle-of-trust.

In contrast to one-to-one relationships between tenants (peer-to-peer), the circle-of-trust pro-
vides an association of tenants where tenants can issue user-assignments (assertions). Circle-of-

trusts are distinguished in terms of the following

e Circle governance. A circle-of-trust can be governed by a creator, a group of members, or
all members. Centralized circles are governed by a single founder governing the rules and
contracts in circle. Consortium model defines a set of founders where they set the rules of

operation in circle. In collaborative model all partners share the governance of the circle.

e Partners Selection. In a circle to select partners either certain pre-established trust agree-
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ments must exist prior to selection, or attributes such as type of tenants or certificates must

be established.

e Partners interaction. Authorized interactions between partners in the circle must be de-
fined. Either equal assertions are allowed (homogeneous) or assertions are limited to tenant

attributes such each tenant’s security level (heterogeneous).

We focus on collaborative governance, pre-established partners, and providing both type of
partners’ interactions in the circle.

RBAC and its variations have been successfully applied to cloud IaaS providing collaboration
within single-cloud or multi-cloud systems. In RBAC access permissions are assigned to roles
and roles are assigned to users. RBAC abstracts permissions into roles and role relations. RBAC
limitations have been recognized over it extensive use in industry leading to a push towards using
attributes with roles [33]. One method of attribute incorporation to roles, is adding attributes to
roles as role-centric attributes which takes advantage of roles’ simplicity and attributes flexibility.
With this consideration, cloud service providers can incorporate ABAC features to their current
RBAC models such with role-centric methods to adopt convenience of RBAC with flexibility of
ABAC models.

In this chapter we present multi-tenant role-centric models with cross-tenant user-assignments.
To our knowledge this is the first work considering role-centric models in circle-of-trust context.
We present novel role-based and role-centric attribute-based access control models to enable col-

laboration in a multi-tenant cloud IaaS circle-of-trust.

6.1.1 Tenant-Trust in Circle

Tenant-trust relationships are elaborated as multilateral, bidirectional, and transitive trust relation-
ship for homogeneous circles and in heterogeneous circles trust relationship is multilateral, uni-
directional, and non-transitive (see section 3.3). In a unidirectional trust relationship, common in

peer-to-peer, trust is initiated and established between two tenants denoted as trustor and trustee.
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Figure 6.1: Cross-Tenant User Assignment in Circle-of-Trust.

In a trust relation, trustor tenant is willing to trust another tenant denoted as trustee tenant. In
our scope, trust is initiated multilaterally between principals in a circle. In the context of circle,
trustor and trustee are not distinguished in trust relations between tenants. We identify tenants
involve in a cross-tenant assignment as user-owner and resource-owner tenants. User-owner tenant
owns the users in the cross-tenant assignment and resource-owner tenant owns the roles to which
users are assigned. Central to tenant-trust defined in this dissertation is authorizing user-owner or
resource-owner tenant to assert cross-tenant user-role assignments.

We use “<” to represent tenant-trust where 7'y < T'g signifies that tenant A trusts tenant B. In
this relation, 7'y is user-owner tenant and 7 is resource-owner tenant. Regardless of circle entity
coupling, we define two types of tenant trust relations labeled as type-¢ and type-C. Each tenant-
trust relation type is applied to all tenants in the circle. In type-e circle, user-owner tenants are
authorized to assign users to roles in the circle. The following defines type-e tenant-trust illustrated

in Figure 6.1a.

Definition 11. If T’y <. Tz, then tenant T 5 is authorized to assign its users to Tg’s roles. Tenant

T4 controls user assignments.

In type-( circle, resource-owner tenants are authorized to assign users in the circle to their roles.

Type-( is defined as the following depicted in Figure 6.1b.

Definition 12. If T’y < T, then tenant Tz is authorized to assign T's’s users to its roles. Tenant

T'g controls user assignments.

In homogeneous circles all peers trust each other and trust is transitive therefore 7'y < T if
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and only if T3 <T'y. However, in heterogeneous circles trust relations are unidirectional and non-
transitive as a result 7'y < T’z may not imply 7z < T4 or vise versa.

Each tenant-trust type caters to a different security concern and objective in circle-of-trust
collaboration. In type-¢, the objective is to merely share resources with trusted tenants. Resource-
owner tenants can decide on resources are shared within principals in the circle using role hierarchy
described in section 6.2. A circle of institutions is an instance of type-e circle where computing
resources are shared between institutions. In this situation, each tenant administrator can assign its
users to shared resources. For instance, a Circle-of-Trust of universities motivates this type of trust
where member universities can assign their students and employees to shared resources within the
circle.

In type-( circle, shared resources privacy and integrity is the main concern where tenants’ re-
sources are highly sensitive data and tenants choose to control access to shared resources. Resource-
owner tenants control user assignments where they can assign users in the circle to roles in their
tenants to authorize access. A circle of banks carries such sensitivity where banks ought to control
access to their shared resources even from trusted banks within the circle. Each bank administrator

assign users from tenants in the circle to its roles, enabling access to its shared resources.

6.2 Homogeneous Role-Based Circle-of-Trust

In this section, we formally present a multi-tenant role-based access control model to enable col-
laboration in a homogeneous circle-of-trust which we refer to as MT-RBAC,. In a homogeneous
circle, tenants are equally authorized to make assertions. Collaboration in MT-RBAC., is issued

through cross-tenant user assignments with respect to circle types € and (.
6.2.1 Multi-Tenant Role-Based Circle-of-Trust (MT-RBAC,)

MT-RBAC, model element sets and relations are depicted in Figure 6.2. These includes sets of
eight basic elements: tenants (1), users (U), private roles (1,,,), public roles (/2,,), roles (I?),

operations (OPYS), objects (OBYS), and permissions (PRM.S). In MT-RBAC, access is funda-
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Figure 6.2: Multi-Tenant RBAC Circle-of-Trust.

mentally defined in terms of intra-tenant and cross-tenant. Users are assigned to private roles and
permissions in intra-tenant assignments. In cross-tenant assignments, users are assigned to public
roles and public roles inherit private roles with limited role hierarchy. MT-RBAC., includes limited
role hierarchy relation utilizing a set of public roles to create a level of abstraction which protects
objects from direct assignments in a circle-of-trust.

A user is a human, non-person entity, an application, or a process making requests to access
objects. We scope users as a human for simplicity where v € U and U is the global set of users
associated to a tenant in the cloud. In our model, a tenant is considered as a virtual container with
tenant-specific environment for cloud services leased to cloud consumers. Practically, a tenant
hosts a project, department, or an organization. Each tenant is represented as ¢ € 7" where 7' is a
global set of tenants in the cloud. Tenants are regarded as an administration domain associated to
users, roles, and objects. Each user, role, and object belongs to a single tenant, called its owner,

while a tenant can own multiple instances of these.
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A role is a job function in the cloud associated with a tenant. Roles are partitioned to public
role and private role disjoint sets, [2,,,;, and 2, respectively. A public role is accessible by trusted
tenants in a circle-of-trust. A private role is accessible only within its owner tenant. In contrast to
private roles, public roles are not associated with permissions directly.

Resources in a tenant are represented by objects, each associated with an owner tenant. In
our model, we consider objects as virtual machines, images, storage objects, networking L2 or
L3 services, etc. Objects are owned by a tenant and paired with operations comprising the set of
actions on cloud resources such as create, read, update, and delete. A permission is an authorization
to perform an operation on a requested object in a tenant, such as a permission to create virtual
machines in a tenant.

Central to MT-RBAC, model is tenant and role relations. Users, roles, and permissions are
global sets in a cloud but they are defined per tenant with a single tenant owner. Tenant ownership
relation is fundamental in how we authorize collaboration. Figure 6.2 illustrates user ownership
(UO), role ownership (RO), and object ownership (OO) relations. The arrows indicate a many-to-
one relation (e.g., a role can be owned by one tenant while a tenant owns many roles) stating the
relation between corresponding components and owner tenant.

In Figure 6.2, C'oT" depicts circle-of-trust relation between tenants. It is defined as a many-to-
many relation between tenants. As stated in section 6.1.1, we use “<” to show trust relation between
tenants. In a homogeneous circle, 7'y < Tz signifies that 7'y and Tz trust each other in a circle. In
a homogeneous circle, each tenant-trust type-e¢ or type-( authorizes user-owner or resource-owner

tenants. We define CoT, as follows.

Definition 13. In a homogeneous CoT.,, for all tenants t| where t, <. t, tenant t, is authorized to
assign its users to public roles in to. Tenant 11 controls cross-tenant user-role assignments of t1’s

users to ty’s roles.

In type-¢, user-owner tenants are authorized to assert assignments, while in type-( role-owner

tenants are authorized. Circle-of-trust type-( is defined as follows.
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Definition 14. In a homogeneous CoTy, for all tenants t, where t, <. lo, tenant t, is authorized to
assign users from ty to public roles in ty. Tenant 5 controls cross-tenant user-role assignments of

t1’s users to t3’s roles.

In homogeneous circles, trust is transitive and tenants are equally authorized, therefore in above
definitions ¢ < t" if and only if ¢’ <, ¢.

In MT-RBAC., the concept of role relations with users and permissions as illustrated in Fig-
ure 6.2 with user assignment (UA) and permission assignment (P A) modified to reflect multi-
tenancy. Fundamentally MT-RBAC., provides collaboration with user-assignment between tenants
in a circle-of-trust. To that end, user assignment is defined only if user and role owned by the same
tenant or user is owned by trustee tenant in type-e¢ and trustor tenant in type-(. User assignment of
user u to role r is defined only if

(owner_user(u) = owner_role(r) Ar € R) V

(owner_user(u) <owner_role(r) AN r € Ryup)
Similarly permission assignment is a many-to-many relation which assigns roles to permissions
within a tenant. Permission assignment is only defined as an intra-tenant assignment, therefore a
permission p is assigned to a role r only if

(owner_role(r) = owner_object(o) A1 € Ryry)

In order to provide a secure collaboration with respect to tenants’ authority on shared resources
in a circle, we utilize limited role hierarchy. With two disjoint sets of private and public roles,
permissions are available to tenants in the circle only through public roles. This arrangement
provides granularity of permission to role assignment and user to role assignment. We define
limited role hierarchy as a partial order on roles with conditional inheritance. We use “>" to
show role inheritance relation where a parent role inherits child’s role permissions with following

conditions.

e Private roles can inherit private roles only if both are owned by the same tenant.

(r1,72 € Rpry A1 = 12) = (owner_role(ry) = owner_role(rs))
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e Private roles cannot inherit public roles.

e Public roles can inherit private roles only if both owned by the same tenant.

(r1 € Rpup A2 € Ry A1 = 12) = (owner_role(ry) = owner_role(rs))

e Public roles can inherit public roles from trusted tenants in the circle!.
(r1,72 € Ryup A1 = 12) = (owner_role(ry) = owner_role(r)V

owner_role(ry) <. owner_role(ry) V owner_role(ry) <¢ owner_role(ry))

Essentially private roles inherit private roles in a tenant whereas public roles can inherit private and
public roles in a tenant and trusted tenants’ public roles.

In our model, assigned_user_roles function gives the roles assigned to each user in the circle.
The permissions assigned to each role in the model is defined assigned_permissions function.
A user is assigned to a set of roles and each role is assigned to a set of permissions given by

authorised_user_permissions function in MT-RBAC...
6.2.2 Formal MT-RBAC,. Model

We summarize the above in the following formal definition.

Definition 15. MT-RBAC. is defined with the following basic component sets and functions.
o T U, R,OPS, and OBS (tenants, users, roles, operations, and objects, respectively).
etecT,uclU,re R ope OPS, and ob € OBS.

o R, is a set of public roles and R,,, is a set of private roles where Ry, € R, R,., C R,

and Rpub N Rprv = @, Rpub U Rprv =R

e PRMS = OPS x OBS, the set of permissions.>

ITrust is defined as a reflexive relation consequently each tenant trusts itself.
2This is slightly different from NIST standard model where PRM S = 2(OPS*OBS) and more appropriate for
our purpose.
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UO C U x T, a many-to-one user-to-tenant owner relation.
RO C R x T, a many-to-one role-to-tenant owner relation.
OO0 C OBS x T, a many-to-one object-to-tenant owner relation.

owner_user : (u : U) — T, the mapping of user u into its owner tenant. Formally:

owner_user(u) =t where (u,t) € UO.

owner_role : (r : R) — T, the mapping of role r into its owner tenant. Formally:

owner_role(r) = t where (r,t) € RO.

owner_object : (ob: OBS) — T, the mapping of object ob into its owner tenant. Formally:

owner_object(ob) = t where (0b,t) € OO.

CoT C T, is a subset of T called Circle-of-Trust. For every two tenants that are member of
CoT (ty,ty € CoT) trust relationship is written as t1 < ty, which is symmetric so ty < to iff

to < tq, reflexive so t, < ty, and transitive.

HomogeneousCoT,, for all tenants t, where 1| <. ty, tenant t, is authorized to assign its

users to public roles in to. Tenant ty controls t1’s users to t5’s roles assignments.

HomogeneousCoTy, for all tenants t, where t, < to, tenant t, is authorized to assign users

from ty to its public roles. Tenant to controls t1’s users to t5’s roles assignments.

UA C U x R, a many-to-many mapping user-to-role assignment relation requiring that
(u,r) € UA = (owner_user(u) = owner_role(r) Ar € R,.,) V ((owner_user(u) <

owner_role(r) V owner_role(r) <c owner_user(uw)) A1 € Ryyp).

PA C PRMS x R, a many-to-many mapping permission-to-role assignment relation re-

quiring that ((op, ob),r) € PA = (owner_object(ob) = owner_role(r) A1 € Ry.).

RH C R x Ris a partial order on R called hierarchy relation, written as >, where 1, > 1
requiring that (r1,r2) € RH = ((owner_role(ry) = owner_role(ry)) A =(r; € Ry A
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T2 € Ryu)) V ((owner_role(ry)<,

owner_role(ry) V owner_role(ry) <¢ owner_role(ry)) A (11,72 € Ryup))-

trusted_tenants : (t : T) — 2T, the mapping of a tenant t to a set of trusted tenants in

circle-of-trust. Formally: trusted_tenants(t) = {t' € T|t at'}

authorized_roles : (t : T) — 2%, the mapping of a tenant t to a set of authorized roles
in circle-of-trust. Formally: authorized_roles(t) = {r € R | role_owner(r) =tV

role_owner(r) € trusted_tenants(t)}

assigned_user_roles : (u : U) — 2%, the mapping of user u into a set of roles. Formally:

assigned_user_roles(u) = {r € R| (u,r) € UA}.

N QPRMS

assigned_permissions : (r : R) , the mapping of role r into a set of permissions.

Formally: assigned_permissions(r) = {p € PRMS | (p,r) € PA}.

authorized_user_permissions : (u : U) — 2FEMS | the mapping of user u into a set of
permissions. authorized_user_permissions(u) =

U assigned_permissions(r).
reassigned_user_roles(u)

Homogeneous Circle Use Case

To better clarify the concept, we present a use-case adopting MT-RBAC.,. in Figure 6.3. A group

of institutions seeks to collaborate on a cyber security research program where researchers across

these universities must have access to dispersed data and computing resources, and be able to col-

laborate on cross-projects within an association of universities. Universities establish a homoge-

neous Cyber circle. Each collaborating research institute become a member of Cyber circle which

is homogeneous type-¢ and partners are equally authorized to make user assignment assertions. In

this scenario researchers can be assigned to research data, computation resources. In Figure 6.3,

UTSA doesn’t share its private VMs in the circle by assigning it to private roles only. Assignments

are administered by user-owner tenants consistently within the circle. UTA, UTSA, and UTD are
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Figure 6.3: Example of Multi-Tenant RBAC,. in Homogeneous circle-of-Trust.

tenants representing respective organizations in a public cloud platform establishing Cyber circle.

6.3 Heterogeneous Role and Attribute-Based Circle-of-Trust

This section, presents a formal multi-tenant role-centric attribute-based access control model des-
ignated as MT-RABAC,, providing collaboration in a heterogeneous circle-of-trust. Our model is
motivated by previously defined role-centric model [32]. In a heterogeneous circle, entities are not
equally authorized to make assertions. Further, each tenant is authorized with respect to its tenant
type (or tenant domain). In MT-RABAC,, cross-tenant user assignments are conditional with re-
spect to tenant domain attribute. Attributes are name:value pairs presenting entities’ properties in

the cloud.
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6.3.1 Multi-Tenant Role-Centric Attribute-Based Circle-of-Trust (MT-RABAC,)

MT-RABAC., adds attributes to enforce cross-tenant assignment separation. Attributes are used to
denote tenant types where tenants are authorized to assert cross-tenant user assignments on certain
type of tenants.

Figure 6.4 depicts elements in MT-RABAC. where tenant attributes (I'ATT), user attributes
(UATT), and object attributes (OATT) are added to the tenant, user, and object components 6.2
respectively. Attribute is considered as a function which takes tenant, user, or object as input
and return a value from its range. For example, an atomic-valued user attribute function such as
employeeType returns employee status of a user john where emplyeeType € UATT, john € U
and emplyeeType(john) = full_time. Range or scope of an attribute is a finite set of atomic values
specifying the valid range of attribute functions. Attribute functions either return a single value or
set of values which it refers to as atomic-valued and set-valued attribute types.

In MT-RABAC,, users and objects are associated with attributes UATT and OATT. Each
user is assigned a finite set of user attributes such as name, position, salary, etc. Each user attribute
is uniquely owned by a tenant, depicted by required meta-attribute uattOwner. User attributes are
defined as partial function where a user u can be assigned a value for uatt only if

user_owner(u) = uattOwner(uatt)
We defined user and object attributes per tenant to eliminate attribute conflict in presence of multi-
tenancy. Each object is associated with set of O AT'T representing properties such as creation time,
risk level, VM owners, etc. Each oatt is owned uniquely by a tenant. We defined oattOwner as a
required atomic-valued meta-attribute mapping oatt to attribute owner tenant respectively. Object
attributes are similarly defined as partial function defined only if

user_owner(u) = uattOwner(uatt)
User and object attributes can be used by security administrators to further customize access to
shared resources, such as a condition where users with management position attribute can only be

assigned to management roles in trusted tenants.
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Figure 6.4: Multi-Tenant Role-Centric ABAC Circle-of-Trust.
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Tenant attributes are fundamental to MT-RABAC, to enforce limitations on cross-tenant user
assignments. Moreover, we define domain (D) as a set of tenant types in the system. Particularly
a tenant is related to a domain with an atomic-valued required attribute function tenantDomain. 1t
specifies type of a tenant. In order to separate user-assignments, trustedDomains is defined as a
required set-valued tenant attribute specifying group of tenants which can assert assignments. In
this context, user-assignment is modified with respect to trustedDomains attributes. In type-e circle,
user-owner tenant can assign its users to roles in tenants which it is a member of trustedDomains
set. In type(, user assignment is modified to satisfy the condition where role-owner tenant can
assign users from tenants in the circle, if it is member of their trustedDomains set. A user is
assigned to a role only if

(owner_user(u) = owner_role(r) Ar € R) V
(owner_user(u) <. owner_role(r) Ar € Ryup/
tenant Domain(owner_user(u)) € trustedDomains(owner_role(r)))V
(owner_user(u) < owner_role(r) Ar € Ry
tenant Domain(owner_role(r)) € trusted Domains(owner_user(u)))
In a circle-of-trust we allow only one trust type in the circle. We don’t allow both type € and ¢
at once to a circle due to conflict of interest. Permission-assignment remains unchanged where a
permission is assigned to a role only if
(owner_role(r) = owner_object(o) Ar € Rypy)
Authorized_user_permisisons denotes the set of permissions available to a user where limited user

assignments with respect to tenant types reflected.
6.3.2 Formal MT-RABAC,. Model

We formally define MT-RABAC. as follows.

Definition 16. Multi-tenant role-centric ABAC. is defined by the following enhancements and mod-

ifications to MT-RBAC...

o T, U, Ry, Ryupy OPS, and OBS are defined as in MT-RBAC.,..
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e D represents a finite set of existing domains.

o TATT, UATT, and OATT represent finite set of tenant, user, and object attribute functions

respectively.

e For each att in TATT UUATT U OATT, Scope(att) represents the attribute’s scope, a

finite set of atomic values.

o attType : TATT UUATT UOATT — {set,atomic}, specifies attributes as set or atomic

valued.

e UO, RO, and OO represents user, role, and object owner many-to-one relations as defined

in MT-RBAC.,.

e owner_user, owner_role, and owner_object are functions mapping users, roles, and ob-

jects to owner tenant respectively, defined in MT-RBAC . model.

e Each tenant attribute function maps elements in '[' to atomic or set values as follows.

Scope(tatt) if attType(tatt) = atomic
Vtatt € TATT tatt - T — (tatt) (tatt)

Scope(tatt) £ qttType(tatt) = set

o Each user attribute function uatt € U ATT is defined as a partial function mapping elements

in U to atomic or set values.

Scope(uatt) if attType(uatt) = atomic
VYuatt € UATT .uatt : U — pe( ) if ype( )

Scope(uatt) i f qttType(uatt) = set

uatt(u : U) is defined only if uattOwner(uatt) = owner_user(u).

e Each object attribute function oatt € O ATT is defined a partial function mapping elements

in O to atomic or set values.

Scope(oatt) if attType(oatt) = atomic
Yoatt € OATT.oatt : O — (catt) ( )

Scope(oatt) — f attType(oatt) = set
oatt(o : O) is defined only if oattOwner(oatt) = owner_object(o).
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o MATT = {uattOwner, oattOwner}, required meta-attribute functions.

— uattOwner : (uatt : UATT) — T, required user atomic meta attribute function,

mapping user attribute uatt to attribute owner tenant t.

- oattOwner : (oatt : OATT) — T, required object atomic meta attribute function,

mapping object attribute oatt to attribute owner tenant t.

e tenantDomain : (t : T) — D, required tenant atomic attribute function mapping tenant t

to tenant domain d. tenant Domain € TATT.

o trustedDomains : (t : T') — 2P, required tenant set attribute function mapping tenant t to

powerset of trusted domains D. trustedDomains € TATT.

e HeterogeneousCoTy, for all tenants t, where t, <. to, if tenant Domain(t,) €
trusted Domain(ty), then tenant t is authorized to assign its users to public roles in ts.

Tenant ty controls t,’s users to t5’s roles assignments.

e HeterogeneousColy, for all tenants t; where t, < ts, if tenant Domain(ty) €
trusted Domain(t,), then tenant ty is authorized to assign users from ty to its public roles.

Tenant to controls t1’s users to to’s roles assignments.

e UA C U x R, a many-to-many mapping user-to-role assignment relation requiring that
(u,r) € UA = (owner_user(u) = owner_role(r) Ar € R) V
(owner_user(u) <. owner_role(r) Ar € Ry tenant Domain(owner_user(u)) €
trustedDomains(owner_role(r))) V (owner_user(u) <¢ owner_role(r) A r € Ry,

tenant Domain(owner_role(r)) € trustedDomains(owner_user(u))).

e PA C PRMS x R, a many-to-many mapping permission-to-role assignment relation re-

quiring that ((op,ob),r) € PA = (owner_object(ob) = owner_role(r) A1 € Ry.,).
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Chapter 7: CONCLUSION

The following sections summarize contributions of this dissertation and the discuss of some future

research directions for future studies.

7.1 Summary

In this research, we introduced a federation framework for Peer-to-Peer and Circle-of-Trust feder-
ation models providing authorization federation in multi-tenant cloud IaaS. In Peer-to-Peer feder-
ation, a tenant establishes trust to another tenant, however, in Circle-of-Trust a tenant establishes
trust with a group of tenants. Defined tenant-trust types enable user-role and attribute assignments
across tenants in a cloud IaaS platform.

In Peer-to-Peer federation, we define a multi-cloud MT-RBAC model providing user-role as-
signments across tenants in distinct clouds and MT-ABAC model enabling attribute assignments to
provide access to shared resources across tenants. In multi-cloud MT-RBAC, tenant-trust type-a
authorizes trustor tenant to assign trustee’s users to its roles and type-£ authorizes trustee tenant
to assign trustor’s users to its roles. Type-~y authorizes trustee tenant to assign its users to roles in
trustor and type-0 delegates trustee tenant to assign users to roles in trustor. MT-ABAC considers
cross-tenant attribute assignments authorized by type of tenant-trust. Type-a tenant-trust autho-
rizes trustor tenant to assign its attributes to trustee’s users. Type-( authorizes a trustee tenant to
assign its attributes to trustor’s users. Type-vy authorizes trustee tenant to assign trustor tenants’ at-
tributes to its users. Tenant-trust in Peer-to-Peer federation considered as unilateral, unidirectional,
and non-transitive trust relationship.

In Circle-of-Trust federation, we defined MT-RBAC,. and MT-RABAC, providing user-role
assignments in homogeneous and heterogeneous circles respectively. MT-RBAC, allows tenants
to equally assert cross-tenant user assignments in homogeneous circles where tenants are from
uniform type. Further, in MT-RABAC., attributes are associated with user, object, and tenant com-

ponents to differentiate user-assignments in heterogeneous circles where tenants are not from uni-
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form types. Tenant-trust in the circle is defined between tenant members in the circle as type €
and (. Type-¢ tenant-trust authorizes user-owner tenants to assign their users to public-roles in the
circle and type-( authorizes role-owner tenants to assign users in the circle to their public-roles.
Moreover, tenant-trust is considered as multilateral, bidirectional, and transitive trust relations in
homogeneous circles and multilateral, bidirectional, and transitive trust relationships in heteroge-

neous circles.

7.2 Future Work

There are several topics of interest to extend the work presented in this dissertation.

In Multi-tenant multi-cloud federation, extension of current approaches to heterogeneous cloud
platforms in addition to policy integration issues in heterogeneous multi-cloud IaaS is a topic of
interest to be investigated.

Moreover, multi-tenant ABAC can be explored to cover contextual (risk adaptive) and environ-
mental attributes. Administrative model is another motivating extension of MT-ABAC.

Further, multi-tenant access control models using provenance can become another potential

multi-tenant model.
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